BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16173918)

  • 1. Reactivity of free thiol groups in type-I inositol trisphosphate receptors.
    Joseph SK; Nakao SK; Sukumvanich S
    Biochem J; 2006 Jan; 393(Pt 2):575-82. PubMed ID: 16173918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of mersalyl on inositol trisphosphate receptor binding and ion channel function.
    Joseph SK; Ryan SV; Pierson S; Renard-Rooney D; Thomas AP
    J Biol Chem; 1995 Feb; 270(8):3588-93. PubMed ID: 7533153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thimerosal stimulates Ca2+ flux through inositol 1,4,5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+-dependent intramolecular interaction.
    Bultynck G; Szlufcik K; Kasri NN; Assefa Z; Callewaert G; Missiaen L; Parys JB; De Smedt H
    Biochem J; 2004 Jul; 381(Pt 1):87-96. PubMed ID: 15015936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trypsin digestion of the inositol trisphosphate receptor: implications for the conformation and domain organization of the protein.
    Joseph SK; Pierson S; Samanta S
    Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):859-65. PubMed ID: 7741718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single channel function of recombinant type-1 inositol 1,4,5-trisphosphate receptor ligand binding domain splice variants.
    Ramos-Franco J; Caenepeel S; Fill M; Mignery G
    Biophys J; 1998 Dec; 75(6):2783-93. PubMed ID: 9826600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inositol 1,4,5-trisphosphate receptor/GAPDH complex augments Ca2+ release via locally derived NADH.
    Patterson RL; van Rossum DB; Kaplin AI; Barrow RK; Snyder SH
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1357-9. PubMed ID: 15677321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of full-length and truncated recombinant human brain type I inositol 1,4,5-trisphosphate receptors in mammalian and insect cells.
    Niu TK; Ashley RH
    Biochem Biophys Res Commun; 2000 Jun; 273(1):123-8. PubMed ID: 10917868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The properties of a subtype of the inositol 1,4,5-trisphosphate receptor resulting from alternative splicing of the mRNA in the ligand-binding domain.
    Lièvremont JP; Lancien H; Hilly M; Mauger JP
    Biochem J; 1996 Aug; 317 ( Pt 3)(Pt 3):755-62. PubMed ID: 8760359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct association of ligand-binding and pore domains in homo- and heterotetrameric inositol 1,4,5-trisphosphate receptors.
    Boehning D; Joseph SK
    EMBO J; 2000 Oct; 19(20):5450-9. PubMed ID: 11032812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning of mouse type 2 and type 3 inositol 1,4,5-trisphosphate receptors and identification of a novel type 2 receptor splice variant.
    Iwai M; Tateishi Y; Hattori M; Mizutani A; Nakamura T; Futatsugi A; Inoue T; Furuichi T; Michikawa T; Mikoshiba K
    J Biol Chem; 2005 Mar; 280(11):10305-17. PubMed ID: 15632133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor.
    Sugawara H; Kurosaki M; Takata M; Kurosaki T
    EMBO J; 1997 Jun; 16(11):3078-88. PubMed ID: 9214625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteolysis of type I inositol 1,4,5-trisphosphate receptor in WB rat liver cells.
    Khan MT; Joseph SK
    Biochem J; 2003 Nov; 375(Pt 3):603-11. PubMed ID: 12927021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane insertion, glycosylation, and oligomerization of inositol trisphosphate receptors in a cell-free translation system.
    Joseph SK; Boehning D; Pierson S; Nicchitta CV
    J Biol Chem; 1997 Jan; 272(3):1579-88. PubMed ID: 8999831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epithelial inositol 1,4,5-trisphosphate receptors. Multiplicity of localization, solubility, and isoforms.
    Bush KT; Stuart RO; Li SH; Moura LA; Sharp AH; Ross CA; Nigam SK
    J Biol Chem; 1994 Sep; 269(38):23694-9. PubMed ID: 8089140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heteroligomers of type-I and type-III inositol trisphosphate receptors in WB rat liver epithelial cells.
    Joseph SK; Lin C; Pierson S; Thomas AP; Maranto AR
    J Biol Chem; 1995 Oct; 270(40):23310-6. PubMed ID: 7559486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The human type 1 inositol 1,4,5-trisphosphate receptor from T lymphocytes. Structure, localization, and tyrosine phosphorylation.
    Harnick DJ; Jayaraman T; Ma Y; Mulieri P; Go LO; Marks AR
    J Biol Chem; 1995 Feb; 270(6):2833-40. PubMed ID: 7852357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of proteasomal degradation of inositol trisphosphate receptors in CHO-K1 cells.
    Bhanumathy CD; Nakao SK; Joseph SK
    J Biol Chem; 2006 Feb; 281(6):3722-30. PubMed ID: 16316991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inositol 1,4,5-trisphosphate receptor subtypes in adrenal glomerulosa cells.
    Enyedi P; Szabadkai G; Horváth A; Szilágyi L; Gráf L; Spät A
    Endocrinology; 1994 Jun; 134(6):2354-9. PubMed ID: 8194461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol-reactive agents biphasically regulate inositol 1,4,5-trisphosphate binding and Ca(2+) release activities in bovine adrenal cortex microsomes.
    Poirier SN; Poitras M; Laflamme K; Guillemette G
    Endocrinology; 2001 Jun; 142(6):2614-21. PubMed ID: 11356712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of Ca2+ in triggering inositol 1,4,5-trisphosphate receptor ubiquitination.
    Alzayady KJ; Wojcikiewicz RJ
    Biochem J; 2005 Dec; 392(Pt 3):601-6. PubMed ID: 16134970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.