BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 16174034)

  • 1. Dissociation of expression patterns of homeodomain transcription factors in the evolution of developmental mode in the sea urchins Heliocidaris tuberculata and H. erythrogramma.
    Wilson KA; Andrews ME; Raff RA
    Evol Dev; 2005; 7(5):401-15. PubMed ID: 16174034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Major regulatory factors in the evolution of development: the roles of goosecoid and Msx in the evolution of the direct-developing sea urchin Heliocidaris erythrogramma.
    Wilson KA; Andrews ME; Rudolf Turner F; Raff RA
    Evol Dev; 2005; 7(5):416-28. PubMed ID: 16174035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene expression patterns in a novel animal appendage: the sea urchin pluteus arm.
    Love AC; Andrews ME; Raff RA
    Evol Dev; 2007; 9(1):51-68. PubMed ID: 17227366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apextrin, a novel extracellular protein associated with larval ectoderm evolution in Heliocidaris erythrogramma.
    Haag ES; Sly BJ; Andrews ME; Raff RA
    Dev Biol; 1999 Jul; 211(1):77-87. PubMed ID: 10373306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-option and dissociation in larval origins and evolution: the sea urchin larval gut.
    Love AC; Lee AE; Andrews ME; Raff RA
    Evol Dev; 2008; 10(1):74-88. PubMed ID: 18184359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nodal expression and heterochrony in the evolution of dorsal-ventral and left-right axes formation in the direct-developing sea urchin Heliocidaris erythrogramma.
    Smith MS; Turner FR; Raff RA
    J Exp Zool B Mol Dev Evol; 2008 Dec; 310(8):609-22. PubMed ID: 18702078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-option of an oral-aboral patterning mechanism to control left-right differentiation: the direct-developing sea urchin Heliocidaris erythrogramma is sinistralized, not ventralized, by NiCl2.
    Minsuk SB; Raff RA
    Evol Dev; 2005; 7(4):289-300. PubMed ID: 15982366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of evolutionary changes in timing, spatial expression, and mRNA processing in the msp130 gene in a direct-developing sea urchin, Heliocidaris erythrogramma.
    Klueg KM; Harkey MA; Raff RA
    Dev Biol; 1997 Feb; 182(1):121-33. PubMed ID: 9028919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of OTP-independent larval skeleton patterning in the direct-developing sea urchin, Heliocidaris erythrogramma.
    Zhou N; Wilson KA; Andrews ME; Kauffman JS; Raff RA
    J Exp Zool B Mol Dev Evol; 2003 Dec; 300(1):58-71. PubMed ID: 14984035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological evolution in sea urchin development: hybrids provide insights into the pace of evolution.
    Byrne M; Voltzow J
    Bioessays; 2004 Apr; 26(4):343-7. PubMed ID: 15057932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modularity and dissociation in the evolution of gene expression territories in development.
    Raff RA; Sly BJ
    Evol Dev; 2000; 2(2):102-13. PubMed ID: 11258388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary changes in sites and timing of actin gene expression in embryos of the direct- and indirect-developing sea urchins, Heliocidaris erythrogramma and H. tuberculata.
    Kissinger JC; Raff RA
    Dev Genes Evol; 1998 Apr; 208(2):82-93. PubMed ID: 9569349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of three mRNAs enriched in embryos of the direct-developing sea urchin Heliocidaris erythrogramma: evolution of larval ectoderm.
    Haag ES; Raff RA
    Dev Genes Evol; 1998 Jun; 208(4):188-204. PubMed ID: 9634485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel gene expression patterns in hybrid embryos between species with different modes of development.
    Nielsen MG; Wilson KA; Raff EC; Raff RA
    Evol Dev; 2000; 2(3):133-44. PubMed ID: 11252569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos.
    Tan H; Ransick A; Wu H; Dobias S; Liu YH; Maxson R
    Dev Biol; 1998 Sep; 201(2):230-46. PubMed ID: 9740661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Larval ectoderm, organizational homology, and the origins of evolutionary novelty.
    Love AC; Raff RA
    J Exp Zool B Mol Dev Evol; 2006 Jan; 306(1):18-34. PubMed ID: 16075457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SpHbox7, a new Abd-B class homeobox gene from the sea urchin Strongylocentrotus purpuratus: insights into the evolution of hox gene expression and function.
    Dobias SL; Zhao AZ; Tan H; Bell JR; Maxson R
    Dev Dyn; 1996 Dec; 207(4):450-60. PubMed ID: 8950519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary change in the process of dorsoventral axis determination in the direct developing sea urchin, Heliocidaris erythrogramma.
    Henry JJ; Raff RA
    Dev Biol; 1990 Sep; 141(1):55-69. PubMed ID: 2391006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct-developing sea urchins and the evolutionary reorganization of early development.
    Raff RA
    Bioessays; 1992 Apr; 14(4):211-8. PubMed ID: 1596270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.