BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16174733)

  • 1. Volatile fractionation in the early solar system and chondrule/matrix complementarity.
    Bland PA; Alard O; Benedix GK; Kearsley AT; Menzies ON; Watt LE; Rogers NW
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13755-60. PubMed ID: 16174733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of moderately volatile trace elements in fine-grained chondrule rims in the unequilibrated CO3 chondrite, ALH A77307.
    Brearley AJ; Bajt S; Sutton SR
    Geochim Cosmochim Acta; 1995 Oct; 59(20):4307-16. PubMed ID: 11539372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unifying model for the accretion of chondrules and matrix.
    van Kooten EMME; Moynier F; Agranier A
    Proc Natl Acad Sci U S A; 2019 Sep; 116(38):18860-18866. PubMed ID: 31484773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnesium and
    Olsen MB; Wielandt D; Schiller M; Van Kooten EM; Bizzarro M
    Geochim Cosmochim Acta; 2016 Oct; 191():118-138. PubMed ID: 27563152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of chondrules in a moderately high dust enriched disk: evidence from oxygen isotopes of chondrules from the Kaba CV3 chondrite.
    Hertwig AT; Defouilloy C; Kita NT
    Geochim Cosmochim Acta; 2018 Mar; 224():116-131. PubMed ID: 30713348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen isotope systematics of chondrules in the Murchison CM2 chondrite and implications for the CO-CM relationship.
    Chaumard N; Defouilloy C; Kita NT
    Geochim Cosmochim Acta; 2018 May; 228():220-242. PubMed ID: 30713349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for oxygen isotopic exchange in chondrules from Kaba (CV3.1) carbonaceous chondrite during aqueous fluid-rock interaction on the CV parent asteroid.
    Krot AN; Nagashima K; Fintor K; Pál-Molnár E
    Acta Geogr Geol Meteorol Debr Geol Gemorfol Termeszfoldr Sor; 2019 Feb; 246():419-435. PubMed ID: 30930966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation of chondrules: petrologic tests of the shock wave model.
    Connolly Jr HC ; Love SG
    Science; 1998 Apr; 280(5360):62-7. PubMed ID: 9525858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromium isotopic insights into the origin of chondrite parent bodies and the early terrestrial volatile depletion.
    Zhu K; Moynier F; Schiller M; Alexander CMO; Davidson J; Schrader DL; van Kooten E; Bizzarro M
    Geochim Cosmochim Acta; 2021 May; 301():158-186. PubMed ID: 34393262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collisional erosion and the non-chondritic composition of the terrestrial planets.
    O'Neill HS; Palme H
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4205-38. PubMed ID: 18826927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-frequency distributions and physical properties of chondrules from x-ray computed microtomography and digital data extraction.
    Friedrich JM; Chen MM; Giordano SA; Matalka OK; Strasser JW; Tamucci KA; Rivers ML; Ebel DS
    Microsc Res Tech; 2022 May; 85(5):1814-1824. PubMed ID: 34962014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imprint of chondrule formation on the K and Rb isotopic compositions of carbonaceous meteorites.
    Nie NX; Chen XY; Hopp T; Hu JY; Zhang ZJ; Teng FZ; Shahar A; Dauphas N
    Sci Adv; 2021 Dec; 7(49):eabl3929. PubMed ID: 34851657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tungsten isotopic constraints on the age and origin of chondrules.
    Budde G; Kleine T; Kruijer TS; Burkhardt C; Metzler K
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2886-91. PubMed ID: 26929340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatile element evolution of chondrules through time.
    Mahan B; Moynier F; Siebert J; Gueguen B; Agranier A; Pringle EA; Bollard J; Connelly JN; Bizzarro M
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):8547-8552. PubMed ID: 30082398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origin of the unique achondrite Northwest Africa 6704: Constraints from petrology, chemistry and Re-Os, O and Ti isotope systematics.
    Hibiya Y; Archer GJ; Tanaka R; Sanborn ME; Sato Y; Iizuka T; Ozawa K; Walker RJ; Yamaguchi A; Yin QZ; Nakamura T; Irving AJ
    Geochim Cosmochim Acta; 2019 Jan; 245():597-627. PubMed ID: 30983599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Earth's volatile element depletion pattern inherited from a carbonaceous chondrite-like source.
    Braukmüller N; Wombacher F; Funk C; Münker C
    Nat Geosci; 2019 Jun; 12(7):564-568. PubMed ID: 31249609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Netschaevo: a new class of chondritic meteorite.
    Bild RW; Wasson JT
    Science; 1977 Jul; 197(4298):58-62. PubMed ID: 17828893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The formation conditions of chondrules and chondrites.
    Alexander CM; Grossman JN; Ebel DS; Ciesla FJ
    Science; 2008 Jun; 320(5883):1617-9. PubMed ID: 18566282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Bells in the continuous accretion between the CM and CR chondrite reservoirs.
    van Kooten E; Cavalcante L; Wielandt D; Bizzarro M
    Meteorit Planet Sci; 2020 Mar; 55(3):575-590. PubMed ID: 32362738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are some chondrule rims formed by impact processes? Observations and experiments.
    Bunch TE; Schultz P; Cassen P; Brownlee D; Podolak M; Lissauer J; Reynolds R; Chang S
    Icarus; 1991; 91():76-92. PubMed ID: 11538105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.