BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16174808)

  • 1. Functional characterization of human monocarboxylate transporter 6 (SLC16A5).
    Murakami Y; Kohyama N; Kobayashi Y; Ohbayashi M; Ohtani H; Sawada Y; Yamamoto T
    Drug Metab Dispos; 2005 Dec; 33(12):1845-51. PubMed ID: 16174808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of monocarboxylate transporter 6: expression in human intestine and transport of the antidiabetic drug nateglinide.
    Kohyama N; Shiokawa H; Ohbayashi M; Kobayashi Y; Yamamoto T
    Drug Metab Dispos; 2013 Nov; 41(11):1883-7. PubMed ID: 23935065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quercetin, Morin, Luteolin, and Phloretin Are Dietary Flavonoid Inhibitors of Monocarboxylate Transporter 6.
    Jones RS; Parker MD; Morris ME
    Mol Pharm; 2017 Sep; 14(9):2930-2936. PubMed ID: 28513167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of Monocarboxylate Transporter 6 to the Pharmacokinetics and Pharmacodynamics of Bumetanide in Mice.
    Jones RS; Ruszaj D; Parker MD; Morris ME
    Drug Metab Dispos; 2020 Sep; 48(9):788-795. PubMed ID: 32587098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional activity of a monocarboxylate transporter, MCT1, in the human retinal pigmented epithelium cell line, ARPE-19.
    Majumdar S; Gunda S; Pal D; Mitra AK
    Mol Pharm; 2005; 2(2):109-17. PubMed ID: 15804185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impairment of Intestinal Monocarboxylate Transporter 6 Function and Expression in Diabetic Rats Induced by Combination of High-Fat Diet and Low Dose of Streptozocin: Involvement of Butyrate-Peroxisome Proliferator-Activated Receptor-
    Xu F; Zhu L; Qian C; Zhou J; Geng D; Li P; Xuan W; Wu F; Zhao K; Kong W; Qin Y; Liang L; Liu L; Liu X
    Drug Metab Dispos; 2019 Jun; 47(6):556-566. PubMed ID: 30923035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport and uptake of nateglinide in Caco-2 cells and its inhibitory effect on human monocarboxylate transporter MCT1.
    Okamura A; Emoto A; Koyabu N; Ohtani H; Sawada Y
    Br J Pharmacol; 2002 Oct; 137(3):391-9. PubMed ID: 12237260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Use of Carboxyfluorescein Reveals the Transport Function of MCT6/SLC16A5 Associated with CD147 as a Chloride-Sensitive Organic Anion Transporter in Mammalian Cells.
    Sugiyama K; Shimano H; Takahashi M; Shimura Y; Shimura A; Furuya T; Tomabechi R; Shirasaka Y; Higuchi K; Kishimoto H; Inoue K
    J Pharm Sci; 2024 Apr; 113(4):1113-1120. PubMed ID: 38160712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of monocarboxylate transporters in uptake of lactic acid in HeLa cells.
    Cheeti S; Warrier BK; Lee CH
    Int J Pharm; 2006 Nov; 325(1-2):48-54. PubMed ID: 16887304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monocarboxylate Transporter 6-Mediated Interactions with Prostaglandin F
    Jones RS; Parker MD; Morris ME
    Pharmaceutics; 2020 Feb; 12(3):. PubMed ID: 32110957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of monocarboxylate transporter 2 and 4 in the transport of gamma-hydroxybutyric acid in mammalian cells.
    Wang Q; Morris ME
    Drug Metab Dispos; 2007 Aug; 35(8):1393-9. PubMed ID: 17502341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A monocarboxylate transporter MCT1 is located at the basolateral pole of rat jejunum.
    Orsenigo MN; Tosco M; Bazzini C; Laforenza U; Faelli A
    Exp Physiol; 1999 Nov; 84(6):1033-42. PubMed ID: 10564700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monocarboxylate Transporters (SLC16): Function, Regulation, and Role in Health and Disease.
    Felmlee MA; Jones RS; Rodriguez-Cruz V; Follman KE; Morris ME
    Pharmacol Rev; 2020 Apr; 72(2):466-485. PubMed ID: 32144120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction and transport of thiazide diuretics, loop diuretics, and acetazolamide via rat renal organic anion transporter rOAT1.
    Uwai Y; Saito H; Hashimoto Y; Inui KI
    J Pharmacol Exp Ther; 2000 Oct; 295(1):261-5. PubMed ID: 10991988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and Proteomic-Transcriptomic Investigation of Monocarboxylate Transporter 6 Knockout Mice: Evidence of a Potential Role in Glucose and Lipid Metabolism.
    Jones RS; Tu C; Zhang M; Qu J; Morris ME
    Mol Pharmacol; 2019 Sep; 96(3):364-376. PubMed ID: 31436537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse organic anion transporter 2 and 3 (mOAT2/3[Slc22a7/8]) mediates the renal transport of bumetanide.
    Kobayashi Y; Ohbayashi M; Kohyama N; Yamamoto T
    Eur J Pharmacol; 2005 Nov; 524(1-3):44-8. PubMed ID: 16256982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of human organic anion transporters with diuretics.
    Hasannejad H; Takeda M; Taki K; Shin HJ; Babu E; Jutabha P; Khamdang S; Aleboyeh M; Onozato ML; Tojo A; Enomoto A; Anzai N; Narikawa S; Huang XL; Niwa T; Endou H
    J Pharmacol Exp Ther; 2004 Mar; 308(3):1021-9. PubMed ID: 14610216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of monocarboxylate transport in human kidney HK-2 cells.
    Wang Q; Lu Y; Yuan M; Darling IM; Repasky EA; Morris ME
    Mol Pharm; 2006; 3(6):675-85. PubMed ID: 17140255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of monocarboxylate uptake and immunohistochemical demonstration of monocarboxylate transporters in cultured rabbit corneal epithelial cells.
    Kawazu K; Fujii S; Yamada K; Shinomiya K; Katsuta O; Horibe Y
    J Pharm Pharmacol; 2013 Mar; 65(3):328-36. PubMed ID: 23356841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactate transport and transporters: general principles and functional roles in brain cells.
    Hertz L; Dienel GA
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):11-8. PubMed ID: 15586354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.