BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 16175388)

  • 1. The influence of a neotropical herbivore (Lamponius portoricensis) on nutrient cycling and soil processes.
    Fonte SJ; Schowalter TD
    Oecologia; 2005 Dec; 146(3):423-31. PubMed ID: 16175388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of manipulated herbivore inputs on nutrient flux and decomposition in a tropical rainforest in Puerto Rico.
    Schowalter TD; Fonte SJ; Geaghan J; Wang J
    Oecologia; 2011 Dec; 167(4):1141-9. PubMed ID: 21713416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaf herbivory and decomposability in a Malaysian tropical rain forest.
    Kurokawa H; Nakashizuka T
    Ecology; 2008 Sep; 89(9):2645-56. PubMed ID: 18831185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Herbivore-mediated material fluxes in a northern deciduous forest under elevated carbon dioxide and ozone concentrations.
    Meehan TD; Couture JJ; Bennett AE; Lindroth RL
    New Phytol; 2014 Oct; 204(2):397-407. PubMed ID: 25078062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant herbivory responses through changes in leaf quality have no effect on subsequent leaf-litter decomposition in a neotropical rain forest tree community.
    Cárdenas RE; Hättenschwiler S; Valencia R; Argoti A; Dangles O
    New Phytol; 2015 Aug; 207(3):817-29. PubMed ID: 25771942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tropical herbivorous phasmids, but not litter snails, alter decomposition rates by modifying litter bacteria.
    Prather CM; Belovsky GE; Cantrell SA; González G
    Ecology; 2018 Apr; 99(4):782-791. PubMed ID: 29603190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests.
    Metcalfe DB; Asner GP; Martin RE; Silva Espejo JE; Huasco WH; Farfán Amézquita FF; Carranza-Jimenez L; Galiano Cabrera DF; Baca LD; Sinca F; Huaraca Quispe LP; Taype IA; Mora LE; Dávila AR; Solórzano MM; Puma Vilca BL; Laupa Román JM; Guerra Bustios PC; Revilla NS; Tupayachi R; Girardin CA; Doughty CE; Malhi Y
    Ecol Lett; 2014 Mar; 17(3):324-32. PubMed ID: 24372865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation.
    Wood TE; Lawrence D; Clark DA; Chazdon RL
    Ecology; 2009 Jan; 90(1):109-21. PubMed ID: 19294918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen cycling in canopy soils of tropical montane forests responds rapidly to indirect N and P fertilization.
    Matson AL; Corre MD; Veldkamp E
    Glob Chang Biol; 2014 Dec; 20(12):3802-13. PubMed ID: 24965673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid nutrient cycling in leaf litter from invasive plants in Hawai'i.
    Allison SD; Vitousek PM
    Oecologia; 2004 Dec; 141(4):612-9. PubMed ID: 15549401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tree species control rates of free-living nitrogen fixation in a tropical rain forest.
    Reed SC; Cleveland CC; Townsend AR
    Ecology; 2008 Oct; 89(10):2924-34. PubMed ID: 18959329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems.
    Sayer EJ
    Biol Rev Camb Philos Soc; 2006 Feb; 81(1):1-31. PubMed ID: 16460580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of the forest canopy on nutrient cycling.
    Prescott CE
    Tree Physiol; 2002 Nov; 22(15-16):1193-200. PubMed ID: 12414379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.
    Villagra M; Campanello PI; Montti L; Goldstein G
    Tree Physiol; 2013 Mar; 33(3):285-96. PubMed ID: 23436182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach.
    Uriarte M; Turner BL; Thompson J; Zimmerman JK
    Ecol Appl; 2015 Oct; 25(7):2022-34. PubMed ID: 26591466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulated browsing affects leaf shedding phenology and litter quality of oak and birch saplings.
    Palacio S; Hester AJ; Maestro M; Millard P
    Tree Physiol; 2013 Apr; 33(4):438-45. PubMed ID: 23574752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of insect frass and cadavers on soil surface litter decomposition along a tropical forest temperature gradient.
    Hwang BC; Giardina CP; Litton CM; Francisco KS; Pacheco C; Thomas N; Uehara T; Metcalfe DB
    Ecol Evol; 2022 Sep; 12(9):e9322. PubMed ID: 36188494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutrient fluxes from insect herbivory increase during ecosystem retrogression in boreal forest.
    Metcalfe DB; Crutsinger GM; Kumordzi BB; Wardle DA
    Ecology; 2016 Jan; 97(1):124-32. PubMed ID: 27008782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-tree sap flow is substantially diminished by leaf herbivory.
    Cunningham SA; Pullen KR; Colloff MJ
    Oecologia; 2009 Jan; 158(4):633-40. PubMed ID: 18953575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis.
    Cleveland CC; Townsend AR; Taylor P; Alvarez-Clare S; Bustamante MM; Chuyong G; Dobrowski SZ; Grierson P; Harms KE; Houlton BZ; Marklein A; Parton W; Porder S; Reed SC; Sierra CA; Silver WL; Tanner EV; Wieder WR
    Ecol Lett; 2011 Sep; 14(9):939-47. PubMed ID: 21749602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.