These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 16175686)

  • 1. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis.
    Kitaya Y; Azuma H; Kiyota M
    Adv Space Res; 2005; 35(9):1584-8. PubMed ID: 16175686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of CO2 and O2 concentrations and light intensity on growth of microalgae (Euglena gracilis) in CELSS.
    Kitaya Y; Kibe S; Oguchi M; Tanaka H; Miyatake K; Nakano Y
    Life Support Biosph Sci; 1998; 5(2):243-7. PubMed ID: 11541682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of CO2 concentration and light intensity on photosynthesis of a rootless submerged plant, Ceratophyllum demersum L., used for aquatic food production in bioregenerative life support systems.
    Kitaya Y; Okayama T; Murakami K; Takeuchi T
    Adv Space Res; 2003; 31(7):1743-9. PubMed ID: 14503512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term cultivation of the flagellate Euglena gracilis.
    Porst M; Lebert M; Hader DP
    Microgravity Sci Technol; 1997; 10(3):166-9. PubMed ID: 11543417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Euglena gracilis growth and cell composition under different temperature, light and trophic conditions.
    Wang Y; Seppänen-Laakso T; Rischer H; Wiebe MG
    PLoS One; 2018; 13(4):e0195329. PubMed ID: 29649233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aquatic modules for bioregenerative life support systems: developmental aspects based on the space flight results of the C.E.B.A.S. MIN-MODULE.
    Blum V
    Adv Space Res; 2003; 31(7):1683-91. PubMed ID: 14503506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor.
    Chae SR; Hwang EJ; Shin HS
    Bioresour Technol; 2006 Jan; 97(2):322-9. PubMed ID: 16171688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO
    Xin K; Guo R; Zou X; Rao M; Huang Z; Kuang C; Ye J; Chen C; Huang C; Zhang M; Yang W; Cheng J
    Sci Total Environ; 2023 Apr; 868():161629. PubMed ID: 36657669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of changes in the major carbon source on the fatty acids of Euglena gracilis.
    Reitz RC; Moore GS
    Lipids; 1972 Mar; 7(3):217-20. PubMed ID: 4623226
    [No Abstract]   [Full Text] [Related]  

  • 10. Animal protein production modules in biological life support systems: novel combined aquaculture techniques based on the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.).
    Blum V; Andriske M; Kreuzberg K; Schreibman MP
    Acta Astronaut; 1995; 36(8-12):615-23. PubMed ID: 11540996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of microalgae suitable for culturing with digestate from methane fermentation.
    Khanh N; Kitaya Y; Xiao L; Endo R; Shibuya T
    Environ Technol; 2013; 34(13-16):2039-45. PubMed ID: 24350457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon dioxide interactions with irradiance and temperature in potatoes.
    Cao W; Tibbitts TW; Wheeler RM
    Adv Space Res; 1994 Nov; 14(11):243-50. PubMed ID: 11540189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of different light-dark cycles on motility and photosynthesis of Euglena gracilis in closed bioreactors.
    Richter PR; Strauch SM; Ntefidou M; Schuster M; Daiker V; Nasir A; Haag FW; Lebert M
    Astrobiology; 2014 Oct; 14(10):848-58. PubMed ID: 25279932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Very high CO2 reduces photosynthesis, dark respiration and yield in wheat.
    Reuveni J; Bugbee B
    Ann Bot; 1997 Oct; 80(4):539-46. PubMed ID: 11541793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isoenzymes of malate dehydrogenase and their regulation in Euglena gracilis Z.
    Peak MJ; Peak JG; Ting IP
    Biochim Biophys Acta; 1972 Sep; 284(1):1-15. PubMed ID: 4627451
    [No Abstract]   [Full Text] [Related]  

  • 16. Production of a thermal stress resistant mutant Euglena gracilis strain using Fe-ion beam irradiation.
    Yamada K; Kazama Y; Mitra S; Marukawa Y; Arashida R; Abe T; Ishikawa T; Suzuki K
    Biosci Biotechnol Biochem; 2016 Aug; 80(8):1650-6. PubMed ID: 27075598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acids as possible alternative nitrogen source for growth of Euglena gracilis Z in life support systems.
    Richter PR; Liu Y; An Y; Li X; Nasir A; Strauch SM; Becker I; Krüger J; Schuster M; Ntefidou M; Daiker V; Haag FW; Aiach A; Lebert M
    Life Sci Space Res (Amst); 2015 Jan; 4():1-5. PubMed ID: 26177616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Culture pH, CO2 tension, and cell division in Euglena gracilis Z.
    Jones CR; Cook JR
    J Cell Physiol; 1978 Aug; 96(2):253-9. PubMed ID: 27527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long term stability of Oligo (dT) 25 magnetic beads for the expression analysis of Euglena gracilis for long term space projects.
    Becker I; Strauch SM; Hauslage J; Lebert M
    Life Sci Space Res (Amst); 2017 May; 13():12-18. PubMed ID: 28554505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aquatic food production modules in bioregenerative life support systems based on higher plants.
    Bluem V; Paris F
    Adv Space Res; 2001; 27(9):1513-22. PubMed ID: 11695430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.