These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16176461)

  • 1. Comparative study on microvascular occlusion and apoptosis in body and limb wounds in the horse.
    Lepault E; Céleste C; Doré M; Martineau D; Theoret CL
    Wound Repair Regen; 2005; 13(5):520-9. PubMed ID: 16176461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelial cell hypertrophy is associated with microvascular occlusion in horse wounds.
    Dubuc V; Lepault E; Theoret CL
    Can J Vet Res; 2006 Jul; 70(3):206-10. PubMed ID: 16850943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equine ANXA2 and MMP1 expression analyses in an experimental model of normal and pathological wound repair.
    Miragliotta V; Lefebvre-Lavoie J; Lussier JG; Theoret CL
    J Dermatol Sci; 2008 Aug; 51(2):103-12. PubMed ID: 18434095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a silicone-containing dressing on exuberant granulation tissue formation and wound repair in horses.
    Ducharme-Desjarlais M; Céleste CJ; Lepault E; Theoret CL
    Am J Vet Res; 2005 Jul; 66(7):1133-9. PubMed ID: 16111150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laminin receptor 1 is differentially expressed in thoracic and limb wounds in the horse.
    Miragliotta V; Lussier JG; Theoret CL
    Vet Dermatol; 2009 Feb; 20(1):27-34. PubMed ID: 19121151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Second-intention repair in the horse and pony and management of exuberant granulation tissue.
    Wilmink JM; van Weeren PR
    Vet Clin North Am Equine Pract; 2005 Apr; 21(1):15-32. PubMed ID: 15691597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic fibroblast growth factor promotes apoptosis and suppresses granulation tissue formation in acute incisional wounds.
    Akasaka Y; Ono I; Yamashita T; Jimbow K; Ishii T
    J Pathol; 2004 Jun; 203(2):710-20. PubMed ID: 15141387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of unfocused extracorporeal shock wave therapy on healing of wounds of the distal portion of the forelimb in horses.
    Silveira A; Koenig JB; Arroyo LG; Trout D; Moens NM; LaMarre J; Brooks A
    Am J Vet Res; 2010 Feb; 71(2):229-34. PubMed ID: 20113232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equine thrombospondin II and secreted protein acidic and cysteine-rich in a model of normal and pathological wound repair.
    Miragliotta V; Raphaël K; Ipiña Z; Lussier JG; Theoret CL
    Physiol Genomics; 2009 Jul; 38(2):149-57. PubMed ID: 19401403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skin temperature during cutaneous wound healing in an equine model of cutaneous fibroproliferative disorder: kinetics and anatomic-site differences.
    Celeste CJ; Deschesne K; Riley CB; Theoret CL
    Vet Surg; 2013 Feb; 42(2):147-53. PubMed ID: 22742866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The microvessels in hypertrophic scars, keloids and related lesions: a review.
    Kischer CW
    J Submicrosc Cytol Pathol; 1992 Apr; 24(2):281-96. PubMed ID: 1600518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of healing of grafted and nongrafted wounds on the distal portion of the forelimbs of horses.
    Schumacher J; Brumbaugh GW; Honnas CM; Tarpley RJ
    Am J Vet Res; 1992 Sep; 53(9):1568-71. PubMed ID: 1416356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional differences in wound oxygenation during normal healing in an equine model of cutaneous fibroproliferative disorder.
    Celeste CJ; Deschene K; Riley CB; Theoret CL
    Wound Repair Regen; 2011; 19(1):89-97. PubMed ID: 20955347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of hyperbaric oxygen on full-thickness meshed sheet skin grafts applied to fresh and granulating wounds in horses.
    Holder TE; Schumacher J; Donnell RL; Rohrbach BW; Adair HS
    Am J Vet Res; 2008 Jan; 69(1):144-7. PubMed ID: 18167100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of bandaging on second intention healing of wounds of the distal limb in horses.
    Dart AJ; Perkins NR; Dart CM; Jeffcott LB; Canfield P
    Aust Vet J; 2009 Jun; 87(6):215-8. PubMed ID: 19489777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired wound healing after local soft x-ray irradiation in rat skin: time course study of pathology, proliferation, cell cycle, and apoptosis.
    Liu X; Liu JZ; Zhang E; Li P; Zhou P; Cheng TM; Zhou YG
    J Trauma; 2005 Sep; 59(3):682-90. PubMed ID: 16361913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathological scarring: strategic interventions.
    O'Leary R; Wood EJ; Guillou PJ
    Eur J Surg; 2002; 168(10):523-34. PubMed ID: 12666691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of extracorporeal shock wave therapy on wounds of the distal portion of the limbs in horses.
    Morgan DD; McClure S; Yaeger MJ; Schumacher J; Evans RB
    J Am Vet Med Assoc; 2009 May; 234(9):1154-61. PubMed ID: 19405886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of platelet-rich plasma on the repair of wounds on the distal aspect of the forelimb in horses.
    Monteiro SO; Lepage OM; Theoret CL
    Am J Vet Res; 2009 Feb; 70(2):277-82. PubMed ID: 19231962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regenerative healing, scar-free healing and scar formation across the species: current concepts and future perspectives.
    Ud-Din S; Volk SW; Bayat A
    Exp Dermatol; 2014 Sep; 23(9):615-9. PubMed ID: 24863070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.