These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 16176461)
21. Hypertrophic scars and keloids: a review and new concept concerning their origin. Kischer CW; Shetlar MR; Chvapil M Scan Electron Microsc; 1982; (Pt 4):1699-713. PubMed ID: 7184146 [TBL] [Abstract][Full Text] [Related]
22. Time course analysis of hypoxia, granulation tissue and blood vessel growth, and remodeling in healing rat cutaneous incisional primary intention wounds. Lokmic Z; Darby IA; Thompson EW; Mitchell GM Wound Repair Regen; 2006; 14(3):277-88. PubMed ID: 16808806 [TBL] [Abstract][Full Text] [Related]
23. Aberrant wound healing in the horse: naturally occurring conditions reminiscent of those observed in man. Theoret CL; Wilmink JM Wound Repair Regen; 2013; 21(3):365-71. PubMed ID: 23441750 [TBL] [Abstract][Full Text] [Related]
24. Nucleotide structure and expression of equine pigment epithelium-derived factor during repair of experimentally induced wounds in horses. Ipiña Z; Lussier JG; Theoret CL Am J Vet Res; 2009 Jan; 70(1):112-7. PubMed ID: 19119956 [TBL] [Abstract][Full Text] [Related]
25. OB-cadherin cloning and expression in a model of wound repair in horses. Miragliotta V; Lefebvre-Lavoie J; Lussier JG; Theoret CL Equine Vet J; 2008 Nov; 40(7):643-8. PubMed ID: 19165933 [TBL] [Abstract][Full Text] [Related]
26. Spatial and temporal expression of types I and II receptors for transforming growth factor beta in normal equine skin and dermal wounds. De Martin I; Theoret CL Vet Surg; 2004; 33(1):70-6. PubMed ID: 14687189 [TBL] [Abstract][Full Text] [Related]
27. Equine lumican (LUM) cDNA sequence and spatio-temporal expression in an experimental model of normal and pathological wound healing. Miragliotta V; Raphäel K; Lussier JG; Theoret CL Vet Dermatol; 2009 Aug; 20(4):243-8. PubMed ID: 19374723 [TBL] [Abstract][Full Text] [Related]
28. The occurrence of biofilm in an equine experimental wound model of healing by secondary intention. Jørgensen E; Bay L; Bjarnsholt T; Bundgaard L; Sørensen MA; Jacobsen S Vet Microbiol; 2017 May; 204():90-95. PubMed ID: 28532812 [TBL] [Abstract][Full Text] [Related]
29. Osteopontin expression in healing wounds of horses and in human keloids. Miragliotta V; Pirone A; Donadio E; Abramo F; Ricciardi MP; Theoret CL Equine Vet J; 2016 Jan; 48(1):72-7. PubMed ID: 25290989 [TBL] [Abstract][Full Text] [Related]
30. Fibrin/platelet plug counteracts cutaneous wound contraction: the hypothesis of "skipping stone". Farahani RM Med Hypotheses; 2007; 69(1):30-2. PubMed ID: 17280798 [TBL] [Abstract][Full Text] [Related]
31. Homeostasis of the epidermal barrier layer: a theory of how occlusion reduces hypertrophic scarring. O'Shaughnessy KD; De La Garza M; Roy NK; Mustoe TA Wound Repair Regen; 2009; 17(5):700-8. PubMed ID: 19769722 [TBL] [Abstract][Full Text] [Related]
32. Equine CTNNB1 and PECAM1 nucleotide structure and expression analyses in an experimental model of normal and pathological wound repair. Miragliotta V; Ipiña Z; Lefebvre-Lavoie J; Lussier JG; Theoret CL BMC Physiol; 2008 Jan; 8():1. PubMed ID: 18237399 [TBL] [Abstract][Full Text] [Related]
33. In vitro and in vivo effects of activated macrophage supernatant on distal limb wounds of ponies. Wilson DA; Adelstein EH; Keegan KG; Barrett BA; Kutz RR Am J Vet Res; 1996 Aug; 57(8):1220-4. PubMed ID: 8836378 [TBL] [Abstract][Full Text] [Related]
34. Regional disturbances in blood flow and metabolism in equine limb wound healing with formation of exuberant granulation tissue. Sørensen MA; Petersen LJ; Bundgaard L; Toft N; Jacobsen S Wound Repair Regen; 2014; 22(5):647-53. PubMed ID: 24935817 [TBL] [Abstract][Full Text] [Related]
35. Novel therapies for scar reduction and regenerative healing of skin wounds. Rhett JM; Ghatnekar GS; Palatinus JA; O'Quinn M; Yost MJ; Gourdie RG Trends Biotechnol; 2008 Apr; 26(4):173-80. PubMed ID: 18295916 [TBL] [Abstract][Full Text] [Related]
36. Cutaneous scarring: Pathophysiology, molecular mechanisms, and scar reduction therapeutics Part I. The molecular basis of scar formation. Profyris C; Tziotzios C; Do Vale I J Am Acad Dermatol; 2012 Jan; 66(1):1-10; quiz 11-2. PubMed ID: 22177631 [TBL] [Abstract][Full Text] [Related]
37. Expression profile of proteins involved in scar formation in the healing process of full-thickness excisional wounds in the porcine model. Ulrich MM; Verkerk M; Reijnen L; Vlig M; van den Bogaerdt AJ; Middelkoop E Wound Repair Regen; 2007; 15(4):482-90. PubMed ID: 17650091 [TBL] [Abstract][Full Text] [Related]
38. Persistent ischemia impairs myofibroblast development in wound granulation tissue: a new model of delayed wound healing. Alizadeh N; Pepper MS; Modarressi A; Alfo K; Schlaudraff K; Montandon D; Gabbiani G; Bochaton-Piallat ML; Pittet B Wound Repair Regen; 2007; 15(6):809-16. PubMed ID: 18028128 [TBL] [Abstract][Full Text] [Related]
39. Effects of extracellular matrix glycosylation on proliferation and apoptosis of human dermal fibroblasts via the receptor for advanced glycosylated end products. Niu Y; Xie T; Ge K; Lin Y; Lu S Am J Dermatopathol; 2008 Aug; 30(4):344-51. PubMed ID: 18645306 [TBL] [Abstract][Full Text] [Related]
40. Histologic changes and gene expression patterns in biopsy specimens from bacteria-inoculated and noninoculated excisional body and limb wounds in horses healing by second intention. J Rgensen E; Hjerpe FB; Hougen HP; Bjarnsholt T; Berg LC; Jacobsen S Am J Vet Res; 2020 Mar; 81(3):276-284. PubMed ID: 32101041 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]