BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16176793)

  • 1. Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis.
    Marentis TC; Kusler B; Yaralioglu GG; Liu S; Haeggström EO; Khuri-Yakub BT
    Ultrasound Med Biol; 2005 Sep; 31(9):1265-77. PubMed ID: 16176793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A minisonicator to rapidly disrupt bacterial spores for DNA analysis.
    Belgrader P; Hansford D; Kovacs GT; Venkateswaran K; Mariella R; Milanovich F; Nasarabadi S; Okuzumi M; Pourahmadi F; Northrup MA
    Anal Chem; 1999 Oct; 71(19):4232-6. PubMed ID: 10517145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-automated bacterial spore detection system with micro-fluidic chips for aerosol collection, spore treatment and ICAN DNA detection.
    Inami H; Tsuge K; Matsuzawa M; Sasaki Y; Togashi S; Komano A; Seto Y
    Biosens Bioelectron; 2009 Jul; 24(11):3299-305. PubMed ID: 19450964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ultra-high temperature flow-through capillary device for bacterial spore lysis.
    Hukari KW; Patel KD; Renzi RF; West JA
    Electrophoresis; 2010 Aug; 31(16):2804-12. PubMed ID: 20737447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics.
    Tung YC; Torisawa YS; Futai N; Takayama S
    Lab Chip; 2007 Nov; 7(11):1497-503. PubMed ID: 17960277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous microfluidic sample preparation system for protein profile-based detection of aerosolized bacterial cells and spores.
    Stachowiak JC; Shugard EE; Mosier BP; Renzi RF; Caton PF; Ferko SM; Van de Vreugde JL; Yee DD; Haroldsen BL; VanderNoot VA
    Anal Chem; 2007 Aug; 79(15):5763-70. PubMed ID: 17591754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic gating valve for microfluidic fluorescence-activated cell sorting.
    Chen P; Feng X; Hu R; Sun J; Du W; Liu BF
    Anal Chim Acta; 2010 Mar; 663(1):1-6. PubMed ID: 20172088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification.
    Chen X; Cui D; Liu C; Li H; Chen J
    Anal Chim Acta; 2007 Feb; 584(2):237-43. PubMed ID: 17386610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic device for dielectrophoresis manipulation and electrodisruption of respiratory pathogen Bordetella pertussis.
    de la Rosa C; Tilley PA; Fox JD; Kaler KV
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2426-32. PubMed ID: 18838368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating amplification efficiency improves multiplex real-time PCR quantification of Bacillus licheniformis and Bacillus subtilis spores in animal feed.
    Jørgensen C; Leser TD
    J Microbiol Methods; 2007 Mar; 68(3):588-95. PubMed ID: 17184861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical cell lysis device for DNA extraction.
    Lee HJ; Kim JH; Lim HK; Cho EC; Huh N; Ko C; Park JC; Choi JW; Lee SS
    Lab Chip; 2010 Mar; 10(5):626-33. PubMed ID: 20162238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell lysis and DNA extraction of gram-positive and gram-negative bacteria from whole blood in a disposable microfluidic chip.
    Mahalanabis M; Al-Muayad H; Kulinski MD; Altman D; Klapperich CM
    Lab Chip; 2009 Oct; 9(19):2811-7. PubMed ID: 19967118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a microfluidic platform with an optical imaging microarray capable of attomolar target DNA detection.
    Bowden M; Song L; Walt DR
    Anal Chem; 2005 Sep; 77(17):5583-8. PubMed ID: 16131069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure-driven chip-based system.
    Palková Z; Váchová L; Valer M; Preckel T
    Cytometry A; 2004 Jun; 59(2):246-53. PubMed ID: 15170604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic chip for high efficiency DNA extraction.
    Chung YC; Jan MS; Lin YC; Lin JH; Cheng WC; Fan CY
    Lab Chip; 2004 Apr; 4(2):141-7. PubMed ID: 15052355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis.
    Deféver T; Druet M; Rochelet-Dequaire M; Joannes M; Grossiord C; Limoges B; Marchal D
    J Am Chem Soc; 2009 Aug; 131(32):11433-41. PubMed ID: 19722651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic sorting of mammalian cells by optical force switching.
    Wang MM; Tu E; Raymond DE; Yang JM; Zhang H; Hagen N; Dees B; Mercer EM; Forster AH; Kariv I; Marchand PJ; Butler WF
    Nat Biotechnol; 2005 Jan; 23(1):83-7. PubMed ID: 15608628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic devices for the high-throughput chemical analysis of cells.
    McClain MA; Culbertson CT; Jacobson SC; Allbritton NL; Sims CE; Ramsey JM
    Anal Chem; 2003 Nov; 75(21):5646-55. PubMed ID: 14588001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcession of DNA from bacteria to human cells in culture: a possible role in oncogenesis.
    Anker P; Zajac V; Lyautey J; Lederrey C; Dunand C; Lefort F; Mulcahy H; Heinemann J; Stroun M
    Ann N Y Acad Sci; 2004 Jun; 1022():195-201. PubMed ID: 15251960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.