BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 16177538)

  • 1. A Monte Carlo and physical phantom evaluation of quantitative In-111 SPECT.
    He B; Du Y; Song X; Segars WP; Frey EC
    Phys Med Biol; 2005 Sep; 50(17):4169-85. PubMed ID: 16177538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of conventional, model-based quantitative planar, and quantitative SPECT image processing methods for organ activity estimation using In-111 agents.
    He B; Frey EC
    Phys Med Biol; 2006 Aug; 51(16):3967-81. PubMed ID: 16885618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of shortened acquisition time on accuracy and precision of quantitative estimates of organ activity.
    He B; Frey EC
    Med Phys; 2010 Apr; 37(4):1807-15. PubMed ID: 20443503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of quantitative imaging methods for organ activity and residence time estimation using a population of phantoms having realistic variations in anatomy and uptake.
    He B; Du Y; Segars WP; Wahl RL; Sgouros G; Jacene H; Frey EC
    Med Phys; 2009 Feb; 36(2):612-9. PubMed ID: 19292001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of quantitative (90)Y SPECT based on experimental phantom studies.
    Minarik D; Sjögreen Gleisner K; Ljungberg M
    Phys Med Biol; 2008 Oct; 53(20):5689-703. PubMed ID: 18812648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of residence time estimation methods for radioimmunotherapy dosimetry and treatment planning--Monte Carlo simulation studies.
    He B; Wahl RL; Du Y; Sgouros G; Jacene H; Flinn I; Frey EC
    IEEE Trans Med Imaging; 2008 Apr; 27(4):521-30. PubMed ID: 18390348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of 3D volume of interest definition on accuracy and precision of activity estimation in quantitative SPECT and planar processing methods.
    He B; Frey EC
    Phys Med Biol; 2010 Jun; 55(12):3535-44. PubMed ID: 20508323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and evaluation of an improved quantitative (90)Y bremsstrahlung SPECT method.
    Rong X; Du Y; Ljungberg M; Rault E; Vandenberghe S; Frey EC
    Med Phys; 2012 May; 39(5):2346-58. PubMed ID: 22559605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification and reduction of the collimator-detector response effect in SPECT by applying a system model during iterative image reconstruction: a simulation study.
    Kalantari F; Rajabi H; Saghari M
    Nucl Med Commun; 2012 Mar; 33(3):228-38. PubMed ID: 22134173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation.
    Dewaraja YK; Wilderman SJ; Ljungberg M; Koral KF; Zasadny K; Kaminiski MS
    J Nucl Med; 2005 May; 46(5):840-9. PubMed ID: 15872359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters.
    Cheng L; Hobbs RF; Segars PW; Sgouros G; Frey EC
    Phys Med Biol; 2013 Jun; 58(11):3631-47. PubMed ID: 23648371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of 3D Monte Carlo-based scatter correction for 99mTc cardiac perfusion SPECT.
    Xiao J; de Wit TC; Staelens SG; Beekman FJ
    J Nucl Med; 2006 Oct; 47(10):1662-9. PubMed ID: 17015903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial volume effect compensation for quantitative brain SPECT imaging.
    Du Y; Tsui BM; Frey EC
    IEEE Trans Med Imaging; 2005 Aug; 24(8):969-76. PubMed ID: 16092329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of 180 degrees and 360 degrees acquisition for myocardial perfusion SPECT with compensation for attenuation, detector response, and scatter: Monte Carlo and mathematical observer results.
    He X; Links JM; Gilland KL; Tsui BM; Frey EC
    J Nucl Cardiol; 2006; 13(3):345-53. PubMed ID: 16750779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and evaluation of convergent and accelerated penalized SPECT image reconstruction methods for improved dose-volume histogram estimation in radiopharmaceutical therapy.
    Cheng L; Hobbs RF; Sgouros G; Frey EC
    Med Phys; 2014 Nov; 41(11):112507. PubMed ID: 25370666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of 3D Monte Carlo-based scatter correction for 201Tl cardiac perfusion SPECT.
    Xiao J; de Wit TC; Zbijewski W; Staelens SG; Beekman FJ
    J Nucl Med; 2007 Apr; 48(4):637-44. PubMed ID: 17401103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and evaluation of a model-based downscatter compensation method for quantitative I-131 SPECT.
    Song N; Du Y; He B; Frey EC
    Med Phys; 2011 Jun; 38(6):3193-204. PubMed ID: 21815394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-based compensation for quantitative 123I brain SPECT imaging.
    Du Y; Tsui BM; Frey EC
    Phys Med Biol; 2006 Mar; 51(5):1269-82. PubMed ID: 16481693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction.
    Elschot M; Smits ML; Nijsen JF; Lam MG; Zonnenberg BA; van den Bosch MA; Viergever MA; de Jong HW
    Med Phys; 2013 Nov; 40(11):112502. PubMed ID: 24320461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative simultaneous 111In∕99mTc SPECT-CT of osteomyelitis.
    Cervo M; Gerbaudo VH; Park MA; Moore SC
    Med Phys; 2013 Aug; 40(8):082501. PubMed ID: 23927346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.