These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16177616)

  • 1. A theoretical study of taper characteristics to optimize performance.
    Thomas L; Busso T
    Med Sci Sports Exerc; 2005 Sep; 37(9):1615-21. PubMed ID: 16177616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Training techniques to improve endurance exercise performances.
    Kubukeli ZN; Noakes TD; Dennis SC
    Sports Med; 2002; 32(8):489-509. PubMed ID: 12076176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model study of optimal training reduction during pre-event taper in elite swimmers.
    Thomas L; Mujika I; Busso T
    J Sports Sci; 2008 Apr; 26(6):643-52. PubMed ID: 18344135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intense training: the key to optimal performance before and during the taper.
    Mujika I
    Scand J Med Sci Sports; 2010 Oct; 20 Suppl 2():24-31. PubMed ID: 20840559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scientific bases for precompetition tapering strategies.
    Mujika I; Padilla S
    Med Sci Sports Exerc; 2003 Jul; 35(7):1182-7. PubMed ID: 12840640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological changes associated with the pre-event taper in athletes.
    Mujika I; Padilla S; Pyne D; Busso T
    Sports Med; 2004; 34(13):891-927. PubMed ID: 15487904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systems model and individual simulations of training strategies in elite short-track speed skaters.
    Méline T; Mathieu L; Borrani F; Candau R; Sanchez AM
    J Sports Sci; 2019 Feb; 37(3):347-355. PubMed ID: 30071185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling training response in elite female gymnasts and optimal strategies of overload training and taper.
    Sanchez AM; Galbès O; Fabre-Guery F; Thomas L; Douillard A; Py G; Busso T; Candau RB
    J Sports Sci; 2013; 31(14):1510-9. PubMed ID: 23656356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional overreaching: the key to peak performance during the taper?
    Aubry A; Hausswirth C; Louis J; Coutts AJ; LE Meur Y
    Med Sci Sports Exerc; 2014 Sep; 46(9):1769-77. PubMed ID: 25134000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulations assessing the potential performance benefit of a final increase in training during pre-event taper.
    Thomas L; Mujika I; Busso T
    J Strength Cond Res; 2009 Sep; 23(6):1729-36. PubMed ID: 19675490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring changes in performance, physiology, biochemistry, and psychology during overreaching and recovery in triathletes.
    Coutts AJ; Wallace LK; Slattery KM
    Int J Sports Med; 2007 Feb; 28(2):125-34. PubMed ID: 16835823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of tapering on performance: a meta-analysis.
    Bosquet L; Montpetit J; Arvisais D; Mujika I
    Med Sci Sports Exerc; 2007 Aug; 39(8):1358-65. PubMed ID: 17762369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of training characteristics and tapering on the adaptation in highly trained individuals: a review.
    Mujika I
    Int J Sports Med; 1998 Oct; 19(7):439-46. PubMed ID: 9839839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of taper on swimming force and swimmer performance after an experimental ten-week training program.
    Papoti M; Martins LE; Cunha SA; Zagatto AM; Gobatto CA
    J Strength Cond Res; 2007 May; 21(2):538-42. PubMed ID: 17530932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training theory and taper: validation in triathlon athletes.
    Banister EW; Carter JB; Zarkadas PC
    Eur J Appl Physiol Occup Physiol; 1999 Jan; 79(2):182-91. PubMed ID: 10029340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and performance responses to a 6-day taper in middle-distance runners: influence of training frequency.
    Mujika I; Goya A; Ruiz E; Grijalba A; Santisteban J; Padilla S
    Int J Sports Med; 2002 Jul; 23(5):367-73. PubMed ID: 12165889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term Periodization Models: Effects on Strength and Speed-strength Performance.
    Hartmann H; Wirth K; Keiner M; Mickel C; Sander A; Szilvas E
    Sports Med; 2015 Oct; 45(10):1373-86. PubMed ID: 26133514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of short-term isokinetic training on standing long-jump performance in untrained men.
    Morriss CJ; Tolfrey K; Coppack RJ
    J Strength Cond Res; 2001 Nov; 15(4):498-502. PubMed ID: 11726263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes.
    Laursen PB; Jenkins DG
    Sports Med; 2002; 32(1):53-73. PubMed ID: 11772161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peaking for optimal performance: Research limitations and future directions.
    Pyne DB; Mujika I; Reilly T
    J Sports Sci; 2009 Feb; 27(3):195-202. PubMed ID: 19153861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.