These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 16177782)

  • 1. Evolutionary information for specifying a protein fold.
    Socolich M; Lockless SW; Russ WP; Lee H; Gardner KH; Ranganathan R
    Nature; 2005 Sep; 437(7058):512-8. PubMed ID: 16177782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural-like function in artificial WW domains.
    Russ WP; Lowery DM; Mishra P; Yaffe MB; Ranganathan R
    Nature; 2005 Sep; 437(7058):579-83. PubMed ID: 16177795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic propensities of amino acids in the native state ensemble: implications for fold recognition.
    Wrabl JO; Larson SA; Hilser VJ
    Protein Sci; 2001 May; 10(5):1032-45. PubMed ID: 11316884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capturing protein sequence-structure specificity using computational sequence design.
    Mach P; Koehl P
    Proteins; 2013 Sep; 81(9):1556-70. PubMed ID: 23609941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A large scale test of computational protein design: folding and stability of nine completely redesigned globular proteins.
    Dantas G; Kuhlman B; Callender D; Wong M; Baker D
    J Mol Biol; 2003 Sep; 332(2):449-60. PubMed ID: 12948494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionarily conserved pathways of energetic connectivity in protein families.
    Lockless SW; Ranganathan R
    Science; 1999 Oct; 286(5438):295-9. PubMed ID: 10514373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic environments in proteins: fundamental determinants of fold specificity.
    Wrabl JO; Larson SA; Hilser VJ
    Protein Sci; 2002 Aug; 11(8):1945-57. PubMed ID: 12142449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Denatured-state energy landscapes of a protein structural database reveal the energetic determinants of a framework model for folding.
    Wang S; Gu J; Larson SA; Whitten ST; Hilser VJ
    J Mol Biol; 2008 Sep; 381(5):1184-201. PubMed ID: 18616947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions.
    Larson SM; Di Nardo AA; Davidson AR
    J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size and structure of the sequence space of repeat proteins.
    Marchi J; Galpern EA; Espada R; Ferreiro DU; Walczak AM; Mora T
    PLoS Comput Biol; 2019 Aug; 15(8):e1007282. PubMed ID: 31415557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selecting sequences that fold into a defined 3D structure: A new approach for protein design based on molecular dynamics and energetics.
    Morra G; Baragli C; Colombo G
    Biophys Chem; 2010 Feb; 146(2-3):76-84. PubMed ID: 19926206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local Interactions That Contribute Minimal Frustration Determine Foldability.
    Zou T; Woodrum BW; Halloran N; Campitelli P; Bobkov AA; Ghirlanda G; Ozkan SB
    J Phys Chem B; 2021 Mar; 125(10):2617-2626. PubMed ID: 33687216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental survey of the transition between two-state and downhill protein folding scenarios.
    Liu F; Du D; Fuller AA; Davoren JE; Wipf P; Kelly JW; Gruebele M
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2369-74. PubMed ID: 18268349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and folding of a designed knotted protein.
    King NP; Jacobitz AW; Sawaya MR; Goldschmidt L; Yeates TO
    Proc Natl Acad Sci U S A; 2010 Nov; 107(48):20732-7. PubMed ID: 21068371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem.
    Shmygelska A; Hoos HH
    BMC Bioinformatics; 2005 Feb; 6():30. PubMed ID: 15710037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional rapidly folding proteins from simplified amino acid sequences.
    Riddle DS; Santiago JV; Bray-Hall ST; Doshi N; Grantcharova VP; Yi Q; Baker D
    Nat Struct Biol; 1997 Oct; 4(10):805-9. PubMed ID: 9334745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric protein design from conserved supersecondary structures.
    ElGamacy M; Coles M; Lupas A
    J Struct Biol; 2018 Dec; 204(3):380-387. PubMed ID: 30558718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary protein stabilization in comparison with computational design.
    Wunderlich M; Martin A; Staab CA; Schmid FX
    J Mol Biol; 2005 Sep; 351(5):1160-8. PubMed ID: 16051264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Native atomic burials, supplemented by physically motivated hydrogen bond constraints, contain sufficient information to determine the tertiary structure of small globular proteins.
    Pereira de Araújo AF; Gomes AL; Bursztyn AA; Shakhnovich EI
    Proteins; 2008 Feb; 70(3):971-83. PubMed ID: 17847091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the relationship between protein stability and folding kinetics: a comparative study of the N-terminal domains of RNase HI, E. coli and Bacillus stearothermophilus L9.
    Sato S; Xiang S; Raleigh DP
    J Mol Biol; 2001 Sep; 312(3):569-77. PubMed ID: 11563917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.