These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 16178214)
1. Length dependence of carbon nanotube thermal conductivity and the "problem of long waves". Mingo N; Broido DA Nano Lett; 2005 Jul; 5(7):1221-5. PubMed ID: 16178214 [TBL] [Abstract][Full Text] [Related]
2. Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-omega method. Choi TY; Poulikakos D; Tharian J; Sennhauser U Nano Lett; 2006 Aug; 6(8):1589-93. PubMed ID: 16895340 [TBL] [Abstract][Full Text] [Related]
5. The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Pradhan NR; Duan H; Liang J; Iannacchione GS Nanotechnology; 2009 Jun; 20(24):245705. PubMed ID: 19471077 [TBL] [Abstract][Full Text] [Related]
6. Measuring the thermal boundary resistance of van der Waals contacts using an individual carbon nanotube. Hirotani J; Ikuta T; Nishiyama T; Takahashi K J Phys Condens Matter; 2013 Jan; 25(2):025301. PubMed ID: 23196929 [TBL] [Abstract][Full Text] [Related]
7. Tuning electrical and thermal connectivity in multiwalled carbon nanotube buckypaper. Yang K; He J; Puneet P; Su Z; Skove MJ; Gaillard J; Tritt TM; Rao AM J Phys Condens Matter; 2010 Aug; 22(33):334215. PubMed ID: 21386505 [TBL] [Abstract][Full Text] [Related]
8. First-principles calculation of the isotope effect on boron nitride nanotube thermal conductivity. Stewart DA; Savić I; Mingo N Nano Lett; 2009 Jan; 9(1):81-4. PubMed ID: 19090747 [TBL] [Abstract][Full Text] [Related]
9. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. Gulotty R; Castellino M; Jagdale P; Tagliaferro A; Balandin AA ACS Nano; 2013 Jun; 7(6):5114-21. PubMed ID: 23672711 [TBL] [Abstract][Full Text] [Related]
10. Phonon engineering in carbon nanotubes by controlling defect concentration. Sevik C; Sevinçli H; Cuniberti G; Cağın T Nano Lett; 2011 Nov; 11(11):4971-7. PubMed ID: 21967464 [TBL] [Abstract][Full Text] [Related]
11. High-field transport and thermal reliability of sorted carbon nanotube network devices. Behnam A; Sangwan VK; Zhong X; Lian F; Estrada D; Jariwala D; Hoag AJ; Lauhon LJ; Marks TJ; Hersam MC; Pop E ACS Nano; 2013 Jan; 7(1):482-90. PubMed ID: 23259715 [TBL] [Abstract][Full Text] [Related]
12. Anomalous size dependence of the thermal conductivity of graphene ribbons. Nika DL; Askerov AS; Balandin AA Nano Lett; 2012 Jun; 12(6):3238-44. PubMed ID: 22612247 [TBL] [Abstract][Full Text] [Related]
13. Ultrahigh Thermal Rectification in Pillared Graphene Structure with Carbon Nanotube-Graphene Intramolecular Junctions. Yang X; Yu D; Cao B; To AC ACS Appl Mater Interfaces; 2017 Jan; 9(1):29-35. PubMed ID: 27936563 [TBL] [Abstract][Full Text] [Related]
14. Energy loss of the electron system in individual single-walled carbon nanotubes. Santavicca DF; Chudow JD; Prober DE; Purewal MS; Kim P Nano Lett; 2010 Nov; 10(11):4538-43. PubMed ID: 20931994 [TBL] [Abstract][Full Text] [Related]
17. Temperature dependence of electron-to-lattice energy transfer in single-wall carbon nanotube bundles. Moos G; Fasel R; Hertel T J Nanosci Nanotechnol; 2003; 3(1-2):145-9. PubMed ID: 12908243 [TBL] [Abstract][Full Text] [Related]
18. Ballistic conduction in multiwalled carbon nanotubes. Berger C; Poncharal P; Yi Y; de Heer W J Nanosci Nanotechnol; 2003; 3(1-2):171-7. PubMed ID: 12908247 [TBL] [Abstract][Full Text] [Related]
19. Improving the electrical conductivity of carbon nanotube networks: a first-principles study. Li EY; Marzari N ACS Nano; 2011 Dec; 5(12):9726-36. PubMed ID: 22059779 [TBL] [Abstract][Full Text] [Related]
20. Strain tuning of the photocurrent spectrum in single-wall carbon nanotubes. Gopinath P; Mohite A; Shah H; Lin JT; Alphenaar BW Nano Lett; 2007 Oct; 7(10):3092-6. PubMed ID: 17887716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]