These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 16178584)
21. Equation of state for hard-sphere fluid in restricted geometry. Kamenetskiy IE; Mon KK; Percus JK J Chem Phys; 2004 Oct; 121(15):7355-61. PubMed ID: 15473806 [TBL] [Abstract][Full Text] [Related]
22. Equation of state of nonadditive d-dimensional hard-sphere mixtures. Santos A; López de Haro M; Yuste SB J Chem Phys; 2005 Jan; 122(2):024514. PubMed ID: 15638605 [TBL] [Abstract][Full Text] [Related]
23. New virial equation of state for hard-disk fluids. Tian J; Gui Y; Mulero A Phys Chem Chem Phys; 2010 Nov; 12(41):13597-602. PubMed ID: 20842295 [TBL] [Abstract][Full Text] [Related]
24. Virial series for fluids of hard hyperspheres in odd dimensions. Rohrmann RD; Robles M; López de Haro M; Santos A J Chem Phys; 2008 Jul; 129(1):014510. PubMed ID: 18624486 [TBL] [Abstract][Full Text] [Related]
25. On the impossibility of defining adhesive hard spheres as sticky limit of a hard-sphere-Yukawa potential. Gazzillo D J Chem Phys; 2011 Mar; 134(12):124504. PubMed ID: 21456673 [TBL] [Abstract][Full Text] [Related]
26. van der Waals-Tonks-type equations of state for hard-hypersphere fluids in four and five dimensions. Wang XZ J Chem Phys; 2004 Apr; 120(15):7055-8. PubMed ID: 15267607 [TBL] [Abstract][Full Text] [Related]
27. Communication: inferring the equation of state of a metastable hard-sphere fluid from the equation of state of a hard-sphere mixture at high densities. Santos A; Yuste SB; de Haro ML J Chem Phys; 2011 Nov; 135(18):181102. PubMed ID: 22088044 [TBL] [Abstract][Full Text] [Related]
28. Virial series expansion and Monte Carlo studies of equation of state for hard spheres in narrow cylindrical pores. Mon KK Phys Rev E; 2018 May; 97(5-1):052114. PubMed ID: 29906986 [TBL] [Abstract][Full Text] [Related]
29. Chemical-potential route for multicomponent fluids. Santos A; Rohrmann RD Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052138. PubMed ID: 23767518 [TBL] [Abstract][Full Text] [Related]
30. Theoretical prediction of the coordination number, local composition, and pressure-volume-temperature properties of square-well and square-shoulder fluids. Hu J; Duan Z J Chem Phys; 2005 Dec; 123(24):244505. PubMed ID: 16396547 [TBL] [Abstract][Full Text] [Related]
31. Thermodynamics of d-dimensional hard sphere fluids confined to micropores. Kim H; Goddard WA; Han KH; Kim C; Lee EK; Talkner P; Hänggi P J Chem Phys; 2011 Mar; 134(11):114502. PubMed ID: 21428627 [TBL] [Abstract][Full Text] [Related]
32. The vanishing limit of the square-well fluid: the adhesive hard-sphere model as a reference system. Largo J; Miller MA; Sciortino F J Chem Phys; 2008 Apr; 128(13):134513. PubMed ID: 18397083 [TBL] [Abstract][Full Text] [Related]
33. Shape factors in equations of state. Part II. Repulsion phenomena in multicomponent chain fluids. Carnahan NF; Müller EA Phys Chem Chem Phys; 2006 Jun; 8(22):2619-23. PubMed ID: 16738715 [TBL] [Abstract][Full Text] [Related]
34. Accurate prediction of hard-sphere virial coefficients B6 to B12 from a compressibility-based equation of state. Hansen-Goos H J Chem Phys; 2016 Apr; 144(16):164506. PubMed ID: 27131556 [TBL] [Abstract][Full Text] [Related]
35. Scaled particle theory for hard sphere pairs. I. Mathematical structure. Stillinger FH; Debenedetti PG; Chatterjee S J Chem Phys; 2006 Nov; 125(20):204504. PubMed ID: 17144712 [TBL] [Abstract][Full Text] [Related]
36. Simple relationship between the virial-route hypernetted-chain and the compressibility-route Percus-Yevick values of the fourth virial coefficient. Santos A; Manzano G J Chem Phys; 2010 Apr; 132(14):144508. PubMed ID: 20406002 [TBL] [Abstract][Full Text] [Related]
37. Chemical-potential route: a hidden Percus-Yevick equation of state for hard spheres. Santos A Phys Rev Lett; 2012 Sep; 109(12):120601. PubMed ID: 23005929 [TBL] [Abstract][Full Text] [Related]
39. van der Waals-Tonks-type equations of state for hard-disk and hard-sphere fluids. Wang XZ Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 1):031203. PubMed ID: 12366102 [TBL] [Abstract][Full Text] [Related]
40. Equation of state and jamming density for equivalent bi- and polydisperse, smooth, hard sphere systems. Ogarko V; Luding S J Chem Phys; 2012 Mar; 136(12):124508. PubMed ID: 22462875 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]