These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 16178608)

  • 21. Homogeneous nucleation of n-propanol, n-butanol, and n-pentanol in a supersonic nozzle.
    Gharibeh M; Kim Y; Dieregsweiler U; Wyslouzil BE; Ghosh D; Strey R
    J Chem Phys; 2005 Mar; 122(9):094512. PubMed ID: 15836155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Test of classical nucleation theory on deeply supercooled high-pressure simulated silica.
    Saika-Voivod I; Poole PH; Bowles RK
    J Chem Phys; 2006 Jun; 124(22):224709. PubMed ID: 16784303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comment on "Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: Metal vapor homogeneous nucleation" [J. Chem. Phys. 124, 014506 (2006)].
    Liu J; Garrick SC
    J Chem Phys; 2010 Jul; 133(4):047101; author reply 047102. PubMed ID: 20687693
    [No Abstract]   [Full Text] [Related]  

  • 24. Homogeneous water nucleation and droplet growth in methane and carbon dioxide mixtures at 235 K and 10 bar.
    Holten V; van Dongen ME
    J Chem Phys; 2010 May; 132(20):204504. PubMed ID: 20515097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gradient theory computation of the radius-dependent surface tension and nucleation rate for n-nonane clusters.
    Hrubý J; Labetski DG; van Dongen ME
    J Chem Phys; 2007 Oct; 127(16):164720. PubMed ID: 17979384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Homogeneous nucleation of a homologous series of n-alkanes (C(i)H(2i+2), i=7-10) in a supersonic nozzle.
    Ghosh D; Bergmann D; Schwering R; Wölk J; Strey R; Tanimura S; Wyslouzil BE
    J Chem Phys; 2010 Jan; 132(2):024307. PubMed ID: 20095674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules.
    Tanaka KK; Kawamura K; Tanaka H; Nakazawa K
    J Chem Phys; 2005 May; 122(18):184514. PubMed ID: 15918736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic model for binary homogeneous nucleation in the H2O-H2SO4 system: comparison with experiments and classical theory of nucleation.
    Sorokin A; Vancassel X; Mirabel P
    J Chem Phys; 2005 Dec; 123(24):244508. PubMed ID: 16396550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monte Carlo simulation study of droplet nucleation.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 May; 122(17):174508. PubMed ID: 15910046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homogeneous ice nucleation from supercooled water.
    Li T; Donadio D; Russo G; Galli G
    Phys Chem Chem Phys; 2011 Nov; 13(44):19807-13. PubMed ID: 21989826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward a better description of the nucleation rate of crystals and crystalline monolayers.
    Kashchiev D
    J Chem Phys; 2008 Oct; 129(16):164701. PubMed ID: 19045292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleation rate isotherms of argon from molecular dynamics simulations.
    Wedekind J; Wölk J; Reguera D; Strey R
    J Chem Phys; 2007 Oct; 127(15):154515. PubMed ID: 17949181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simple correction to the classical theory of homogeneous nucleation.
    Nadykto AB; Yu F
    J Chem Phys; 2005 Mar; 122(10):104511. PubMed ID: 15836336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Homogeneous nucleation with magic numbers: aluminum.
    Girshick SL; Agarwal P; Truhlar DG
    J Chem Phys; 2009 Oct; 131(13):134305. PubMed ID: 19814551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Steady-state homogeneous nucleation and growth of water droplets: extended numerical treatment.
    Mokshin AV; Galimzyanov BN
    J Phys Chem B; 2012 Oct; 116(39):11959-67. PubMed ID: 22957738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rate constants for OH with selected large alkanes: shock-tube measurements and an improved group scheme.
    Sivaramakrishnan R; Michael JV
    J Phys Chem A; 2009 Apr; 113(17):5047-60. PubMed ID: 19348456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleation of ethanol, propanol, butanol, and pentanol: a systematic experimental study along the homologous series.
    Manka AA; Wedekind J; Ghosh D; Höhler K; Wölk J; Strey R
    J Chem Phys; 2012 Aug; 137(5):054316. PubMed ID: 22894357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calculation of solid-liquid interfacial free energy: a classical nucleation theory based approach.
    Bai XM; Li M
    J Chem Phys; 2006 Mar; 124(12):124707. PubMed ID: 16599718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Freezing of heavy water (D2O) nanodroplets.
    Bhabhe A; Pathak H; Wyslouzil BE
    J Phys Chem A; 2013 Jul; 117(26):5472-82. PubMed ID: 23763363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cluster sizes in direct and indirect molecular dynamics simulations of nucleation.
    Napari I; Julin J; Vehkamäki H
    J Chem Phys; 2009 Dec; 131(24):244511. PubMed ID: 20059083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.