BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16178797)

  • 1. Proteomics in acute myelogenous leukaemia (AML): methodological strategies and identification of protein targets for novel antileukaemic therapy.
    Sjøholt G; Anensen N; Wergeland L; Mc Cormack E; Bruserud Ø; Gjertsen BT
    Curr Drug Targets; 2005 Sep; 6(6):631-46. PubMed ID: 16178797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative analysis of heterogeneities and hallmarks in acute myelogenous leukaemia.
    Hu CW; Qiu Y; Ligeralde A; Raybon AY; Yoo SY; Coombes KR; Qutub AA; Kornblau SM
    Nat Biomed Eng; 2019 Nov; 3(11):889-901. PubMed ID: 30988472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoprotein DIGE profiles reflect blast differentiation, cytogenetic risk stratification, FLT3/NPM1 mutations and therapy response in acute myeloid leukaemia.
    Forthun RB; Aasebø E; Rasinger JD; Bedringaas SL; Berven F; Selheim F; Bruserud Ø; Gjertsen BT
    J Proteomics; 2018 Feb; 173():32-41. PubMed ID: 29175091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein lysine acetylation in normal and leukaemic haematopoiesis: HDACs as possible therapeutic targets in adult AML.
    Bruserud Ø; Stapnes C; Tronstad KJ; Ryningen A; Anensen N; Gjertsen BT
    Expert Opin Ther Targets; 2006 Feb; 10(1):51-68. PubMed ID: 16441228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic strategies for individualizing therapy of acute myeloid leukemia (AML).
    Sjøholt G; Bedringaas SL; Døskeland AP; Gjertsen BT
    Curr Pharm Biotechnol; 2006 Jun; 7(3):159-70. PubMed ID: 16789901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells.
    Weber C; Schreiber TB; Daub H
    J Proteomics; 2012 Feb; 75(4):1343-56. PubMed ID: 22115753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted therapy in acute myeloid leukemia: current status and new insights from a proteomic perspective.
    van Dijk AD; de Bont ESJM; Kornblau SM
    Expert Rev Proteomics; 2020 Jan; 17(1):1-10. PubMed ID: 31945303
    [No Abstract]   [Full Text] [Related]  

  • 8. Human stem cell factor-antibody [anti-SCF] enhances chemotherapy cytotoxicity in human CD34+ resistant myeloid leukaemia cells.
    Lu C; Hassan HT
    Leuk Res; 2006 Mar; 30(3):296-302. PubMed ID: 16112192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of acute myeloid leukemia: Identification of potential early biomarkers and therapeutic targets.
    López-Pedrera C; Villalba JM; Siendones E; Barbarroja N; Gómez-Díaz C; Rodríguez-Ariza A; Buendía P; Torres A; Velasco F
    Proteomics; 2006 Apr; 6 Suppl 1():S293-9. PubMed ID: 16521150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative proteomic analysis of EZH2 inhibition in acute myeloid leukemia reveals the targets and pathways that precede the induction of cell death.
    Sandow JJ; Infusini G; Holik AZ; Brumatti G; Averink TV; Ekert PG; Webb AI
    Proteomics Clin Appl; 2017 Sep; 11(9-10):. PubMed ID: 28447382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics of p53 in diagnostics and therapy of acute myeloid leukemia.
    Anensen N; Haaland I; D'Santos C; Van Belle W; Gjertsen BT
    Curr Pharm Biotechnol; 2006 Jun; 7(3):199-207. PubMed ID: 16789904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apoptosis, bcl-2 expression and p53 accumulation in myelodysplastic syndrome, myelodysplastic-syndrome-derived acute myelogenous leukemia and de novo acute myelogenous leukemia.
    Kurotaki H; Tsushima Y; Nagai K; Yagihashi S
    Acta Haematol; 2000; 102(3):115-23. PubMed ID: 10692673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspectives of proteomics in acute myeloid leukemia.
    Czibere A; Grall F; Aivado M
    Expert Rev Anticancer Ther; 2006 Nov; 6(11):1663-75. PubMed ID: 17134369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AML1-ETO triggers epigenetic activation of early growth response gene l, inducing apoptosis in t(8;21) acute myeloid leukemia.
    Fu L; Huang W; Jing Y; Jiang M; Zhao Y; Shi J; Huang S; Xue X; Zhang Q; Tang J; Dou L; Wang L; Nervi C; Li Y; Yu L
    FEBS J; 2014 Feb; 281(4):1123-31. PubMed ID: 24314118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene and protein analysis reveals that p53 pathway is functionally inactivated in cytogenetically normal Acute Myeloid Leukemia and Acute Promyelocytic Leukemia.
    Abramowitz J; Neuman T; Perlman R; Ben-Yehuda D
    BMC Med Genomics; 2017 Mar; 10(1):18. PubMed ID: 28340577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific pattern of protein expression in acute myeloid leukemia harboring FLT3-ITD mutations.
    Scholl S; Melle C; Bleul A; Spies-Weisshart B; Kunert C; Höffken K; von Eggeling F
    Leuk Lymphoma; 2007 Dec; 48(12):2418-23. PubMed ID: 18067018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The IRF9-SIRT1-P53 axis is involved in the growth of human acute myeloid leukemia.
    Tian WL; Guo R; Wang F; Jiang ZX; Tang P; Huang YM; Sun L
    Exp Cell Res; 2018 Apr; 365(2):185-193. PubMed ID: 29501566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms and consequences of constitutive activation of integrin-linked kinase in acute myeloid leukemia.
    Alasseiri M; Ahmed AU; Williams BRG
    Cytokine Growth Factor Rev; 2018 Oct; 43():1-7. PubMed ID: 29903521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells.
    Han L; Qiu P; Zeng Z; Jorgensen JL; Mak DH; Burks JK; Schober W; McQueen TJ; Cortes J; Tanner SD; Roboz GJ; Kantarjian HM; Kornblau SM; Guzman ML; Andreeff M; Konopleva M
    Cytometry A; 2015 Apr; 87(4):346-56. PubMed ID: 25598437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunohistochemical detection of p53, mdm2, waf1/p21, and Ki67 proteins in bone marrow biopsies in myelodysplastic syndroms, acute myelogenous leukaemias and chronic myeloproliferative disorders.
    Kanavaros P; Stefanaki K; Rontogianni D; Darivianaki K; Vlychou M; Papadaki E; Eliopoulos G; Bakiri M; Matsouka C; Kakolyris S; Georgoulias V
    Clin Exp Pathol; 1999; 47(5):231-8. PubMed ID: 10598372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.