These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

558 related articles for article (PubMed ID: 16179208)

  • 1. Computer aided characterization of the solitary pulmonary nodule using volumetric and contrast enhancement features.
    Shah SK; McNitt-Gray MF; Rogers SR; Goldin JG; Suh RD; Sayre JW; Petkovska I; Kim HJ; Aberle DR
    Acad Radiol; 2005 Oct; 12(10):1310-9. PubMed ID: 16179208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-aided diagnosis of the solitary pulmonary nodule.
    Shah SK; McNitt-Gray MF; Rogers SR; Goldin JG; Suh RD; Sayre JW; Petkovska I; Kim HJ; Aberle DR
    Acad Radiol; 2005 May; 12(5):570-5. PubMed ID: 15866129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery.
    Messay T; Hardie RC; Rogers SK
    Med Image Anal; 2010 Jun; 14(3):390-406. PubMed ID: 20346728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated lung nodule classification following automated nodule detection on CT: a serial approach.
    Armato SG; Altman MB; Wilkie J; Sone S; Li F; Doi K; Roy AS
    Med Phys; 2003 Jun; 30(6):1188-97. PubMed ID: 12852543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network.
    Suzuki K; Li F; Sone S; Doi K
    IEEE Trans Med Imaging; 2005 Sep; 24(9):1138-50. PubMed ID: 16156352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-aided detection of lung nodules: false positive reduction using a 3D gradient field method and 3D ellipsoid fitting.
    Ge Z; Sahiner B; Chan HP; Hadjiiski LM; Cascade PN; Bogot N; Kazerooni EA; Wei J; Zhou C
    Med Phys; 2005 Aug; 32(8):2443-54. PubMed ID: 16193773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to nodule feature optimization on thin section thoracic CT.
    Samala R; Moreno W; You Y; Qian W
    Acad Radiol; 2009 Apr; 16(4):418-27. PubMed ID: 19268853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology.
    Petrou M; Quint LE; Nan B; Baker LH
    AJR Am J Roentgenol; 2007 Feb; 188(2):306-12. PubMed ID: 17242235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-aided detection of solid lung nodules in lossy compressed multidetector computed tomography chest exams.
    Raffy P; Gaudeau Y; Miller DP; Moureaux JM; Castellino RA
    Acad Radiol; 2006 Oct; 13(10):1194-203. PubMed ID: 16979068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided differentiation of malignant from benign solitary pulmonary nodules imaged by high-resolution CT.
    Iwano S; Nakamura T; Kamioka Y; Ikeda M; Ishigaki T
    Comput Med Imaging Graph; 2008 Jul; 32(5):416-22. PubMed ID: 18501556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database.
    Schilham AM; van Ginneken B; Loog M
    Med Image Anal; 2006 Apr; 10(2):247-58. PubMed ID: 16293441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-automatic volumetric measurement of lung cancer using multi-detector CT effects of nodule characteristics.
    Iwano S; Okada T; Koike W; Matsuo K; Toya R; Yamazaki M; Ito S; Ito J; Naganwa S
    Acad Radiol; 2009 Oct; 16(10):1179-86. PubMed ID: 19524456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural network ensemble-based computer-aided diagnosis for differentiation of lung nodules on CT images: clinical evaluation.
    Chen H; Xu Y; Ma Y; Ma B
    Acad Radiol; 2010 May; 17(5):595-602. PubMed ID: 20167513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT?
    Suzuki K; Doi K
    Acad Radiol; 2005 Oct; 12(10):1333-41. PubMed ID: 16179210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of computer-aided detection system and thin-slab maximum intensity projection technique in the detection of pulmonary nodules in patients with resected metastases.
    Park EA; Goo JM; Lee JW; Kang CH; Lee HJ; Lee CH; Park CM; Lee HY; Im JG
    Invest Radiol; 2009 Feb; 44(2):105-13. PubMed ID: 19034026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulmonary nodule detection in CT images with quantized convergence index filter.
    Matsumoto S; Kundel HL; Gee JC; Gefter WB; Hatabu H
    Med Image Anal; 2006 Jun; 10(3):343-52. PubMed ID: 16542867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feature subset selection for improving the performance of false positive reduction in lung nodule CAD.
    Böröczky L; Zhao L; Lee KP
    IEEE Trans Inf Technol Biomed; 2006 Jul; 10(3):504-11. PubMed ID: 16871718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analysis of early studies released by the Lung Imaging Database Consortium (LIDC).
    Ross JC; Miller JV; Turner WD; Kelliher TP
    Acad Radiol; 2007 Nov; 14(11):1382-8. PubMed ID: 17964461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computerized scheme for determination of the likelihood measure of malignancy for pulmonary nodules on low-dose CT images.
    Aoyama M; Li Q; Katsuragawa S; Li F; Sone S; Doi K
    Med Phys; 2003 Mar; 30(3):387-94. PubMed ID: 12674239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid, part-solid, or non-solid?: classification of pulmonary nodules in low-dose chest computed tomography by a computer-aided diagnosis system.
    Jacobs C; van Rikxoort EM; Scholten ET; de Jong PA; Prokop M; Schaefer-Prokop C; van Ginneken B
    Invest Radiol; 2015 Mar; 50(3):168-73. PubMed ID: 25478740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.