These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
558 related articles for article (PubMed ID: 16179208)
21. Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). Suzuki K; Abe H; MacMahon H; Doi K IEEE Trans Med Imaging; 2006 Apr; 25(4):406-16. PubMed ID: 16608057 [TBL] [Abstract][Full Text] [Related]
22. Quantitative nodule detection in low dose chest CT scans: new template modeling and evaluation for CAD system design. Farag AA; El-Baz A; Gimelfarb G; El-Ghar MA; Eldiasty T Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):720-8. PubMed ID: 16685910 [TBL] [Abstract][Full Text] [Related]
23. Stereo CT image compositing methods for lung nodule detection and characterization. Wang XH; Good WF; Fuhrman CR; Sumkin JH; Britton CA; Golla SK Acad Radiol; 2005 Dec; 12(12):1512-20. PubMed ID: 16321739 [TBL] [Abstract][Full Text] [Related]
24. Robust anisotropic Gaussian fitting for volumetric characterization of pulmonary nodules in multislice CT. Okada K; Comaniciu D; Krishnan A IEEE Trans Med Imaging; 2005 Mar; 24(3):409-23. PubMed ID: 15754991 [TBL] [Abstract][Full Text] [Related]
25. In vivo repeatability of automated volume calculations of small pulmonary nodules with CT. Rampinelli C; De Fiori E; Raimondi S; Veronesi G; Bellomi M AJR Am J Roentgenol; 2009 Jun; 192(6):1657-61. PubMed ID: 19457831 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists' diagnostic accuracy. Hirose T; Nitta N; Shiraishi J; Nagatani Y; Takahashi M; Murata K Acad Radiol; 2008 Dec; 15(12):1505-12. PubMed ID: 19000867 [TBL] [Abstract][Full Text] [Related]
27. Refinement of lung nodule candidates based on local geometric shape analysis and Laplacian of Gaussian kernels. Saien S; Hamid Pilevar A; Abrishami Moghaddam H Comput Biol Med; 2014 Nov; 54():188-98. PubMed ID: 25303113 [TBL] [Abstract][Full Text] [Related]
28. Radiologists' performance for differentiating benign from malignant lung nodules on high-resolution CT using computer-estimated likelihood of malignancy. Li F; Aoyama M; Shiraishi J; Abe H; Li Q; Suzuki K; Engelmann R; Sone S; Macmahon H; Doi K AJR Am J Roentgenol; 2004 Nov; 183(5):1209-15. PubMed ID: 15505279 [TBL] [Abstract][Full Text] [Related]
29. Commercially available computer-aided detection system for pulmonary nodules on thin-section images using 64 detectors-row CT: preliminary study of 48 cases. Yanagawa M; Honda O; Yoshida S; Ono Y; Inoue A; Daimon T; Sumikawa H; Mihara N; Johkoh T; Tomiyama N; Nakamura H Acad Radiol; 2009 Aug; 16(8):924-33. PubMed ID: 19394873 [TBL] [Abstract][Full Text] [Related]
30. Three-dimensional volumetric assessment with thoracic CT: a reliable approach for noncalcified lung nodules? Mazzei MA; Scialpi M; Mazzei FG; Giacobone G; Volterrani L Radiology; 2010 Feb; 254(2):634; author reply 635. PubMed ID: 20093537 [No Abstract] [Full Text] [Related]
31. Computer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble construction. Lee MC; Boroczky L; Sungur-Stasik K; Cann AD; Borczuk AC; Kawut SM; Powell CA Artif Intell Med; 2010 Sep; 50(1):43-53. PubMed ID: 20570118 [TBL] [Abstract][Full Text] [Related]
32. Pulmonary nodules: Preliminary experience with semiautomated volumetric evaluation by CT stratum. Sone S; Tsushima K; Yoshida K; Hamanaka K; Hanaoka T; Kondo R Acad Radiol; 2010 Jul; 17(7):900-11. PubMed ID: 20447841 [TBL] [Abstract][Full Text] [Related]
33. Pulmonary nodule characterization: a comparison of conventional with quantitative and visual semi-quantitative analyses using contrast enhancement maps. Petkovska I; Shah SK; McNitt-Gray MF; Goldin JG; Brown MS; Kim HJ; Brown K; Aberle DR Eur J Radiol; 2006 Aug; 59(2):244-52. PubMed ID: 16616822 [TBL] [Abstract][Full Text] [Related]
34. A weighted rule based method for predicting malignancy of pulmonary nodules by nodule characteristics. Kaya A; Can AB J Biomed Inform; 2015 Aug; 56():69-79. PubMed ID: 26008877 [TBL] [Abstract][Full Text] [Related]
35. Persistent Pure Ground-Glass Nodules Larger Than 5 mm: Differentiation of Invasive Pulmonary Adenocarcinomas From Preinvasive Lesions or Minimally Invasive Adenocarcinomas Using Texture Analysis. Hwang IP; Park CM; Park SJ; Lee SM; McAdams HP; Jeon YK; Goo JM Invest Radiol; 2015 Nov; 50(11):798-804. PubMed ID: 26146871 [TBL] [Abstract][Full Text] [Related]
36. Pulmonary nodule registration in serial CT scans based on rib anatomy and nodule template matching. Shi J; Sahiner B; Chan HP; Hadjiiski L; Zhou C; Cascade PN; Bogot N; Kazerooni EA; Wu YT; Wei J Med Phys; 2007 Apr; 34(4):1336-47. PubMed ID: 17500464 [TBL] [Abstract][Full Text] [Related]
37. Neural network-based computer-aided diagnosis in distinguishing malignant from benign solitary pulmonary nodules by computed tomography. Chen H; Wang XH; Ma DQ; Ma BR Chin Med J (Engl); 2007 Jul; 120(14):1211-5. PubMed ID: 17697569 [TBL] [Abstract][Full Text] [Related]
38. On measuring the change in size of pulmonary nodules. Reeves AP; Chan AB; Yankelevitz DF; Henschke CI; Kressler B; Kostis WJ IEEE Trans Med Imaging; 2006 Apr; 25(4):435-50. PubMed ID: 16608059 [TBL] [Abstract][Full Text] [Related]
39. Automated detection of small-size pulmonary nodules based on helical CT images. Zhang X; McLennan G; Hoffman EA; Sonka M Inf Process Med Imaging; 2005; 19():664-76. PubMed ID: 17354734 [TBL] [Abstract][Full Text] [Related]
40. Lung nodule detection via Bayesian voxel labeling. Mendonça PR; Bhotika R; Zhao F; Miller JV Inf Process Med Imaging; 2007; 20():134-46. PubMed ID: 17633695 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]