These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 16179395)

  • 21. Comparison of tibialis anterior muscle electromyography, ankle angle, and velocity when individuals post stroke walk with different orthoses.
    Lairamore C; Garrison MK; Bandy W; Zabel R
    Prosthet Orthot Int; 2011 Dec; 35(4):402-10. PubMed ID: 21816883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study.
    Bregman DJ; van der Krogt MM; de Groot V; Harlaar J; Wisse M; Collins SH
    Clin Biomech (Bristol, Avon); 2011 Nov; 26(9):955-61. PubMed ID: 21723012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of a stiff and a spring-type ankle-foot orthosis to improve gait in spastic hemiplegic children.
    Brunner R; Meier G; Ruepp T
    J Pediatr Orthop; 1998; 18(6):719-26. PubMed ID: 9821125
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intrinsic ankle and hopping leg-spring stiffness in distance runners and aerobic gymnasts.
    Rabita G; Couturier A; Lambertz D
    Int J Sports Med; 2011 Jul; 32(7):552-8. PubMed ID: 21563039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of rigid and dynamic ankle-foot orthoses on normal gait.
    Guillebastre B; Calmels P; Rougier P
    Foot Ankle Int; 2009 Jan; 30(1):51-6. PubMed ID: 19176186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical characterization and clinical implications of artificially induced toe-walking: differences between pure soleus, pure gastrocnemius and combination of soleus and gastrocnemius contractures.
    Matjacić Z; Olensek A; Bajd T
    J Biomech; 2006; 39(2):255-66. PubMed ID: 16321627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in foot and shank coupling due to alterations in foot strike pattern during running.
    Pohl MB; Buckley JG
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):334-41. PubMed ID: 18006125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leg and joint stiffness in human hopping.
    Kuitunen S; Ogiso K; Komi PV
    Scand J Med Sci Sports; 2011 Dec; 21(6):e159-67. PubMed ID: 22126723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical response to ankle-foot orthosis stiffness during running.
    Russell Esposito E; Choi HS; Owens JG; Blanck RV; Wilken JM
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1125-32. PubMed ID: 26371854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An efficient robotic tendon for gait assistance.
    Hollander KW; Ilg R; Sugar TG; Herring D
    J Biomech Eng; 2006 Oct; 128(5):788-91. PubMed ID: 16995768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A pilot study to investigate the combined use of Botulinum toxin type-a and ankle foot orthosis for the treatment of spastic foot in chronic hemiplegic patients.
    Pradon D; Hutin E; Khadir S; Taiar R; Genet F; Roche N
    Clin Biomech (Bristol, Avon); 2011 Oct; 26(8):867-72. PubMed ID: 21592635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plantar feedback contributes to the regulation of leg stiffness.
    Fiolkowski P; Bishop M; Brunt D; Williams B
    Clin Biomech (Bristol, Avon); 2005 Nov; 20(9):952-8. PubMed ID: 15992975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stepping with an ankle foot orthosis re-examined: a mechanical perspective for clinical decision making.
    Nair PM; Rooney KL; Kautz SA; Behrman AL
    Clin Biomech (Bristol, Avon); 2010 Jul; 25(6):618-22. PubMed ID: 20362373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of modified solid ankle-foot orthosis to be used with and without shoe on dynamic balance and gait characteristic in asymptomatic people.
    Arvin M; Kamyab M; Moradi V; Hajiaghaei B; Maroufi N
    Prosthet Orthot Int; 2013 Apr; 37(2):145-51. PubMed ID: 22907949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition.
    Sawicki GS; Ferris DP
    J Neuroeng Rehabil; 2009 Jun; 6():23. PubMed ID: 19549338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptation to walking with an exoskeleton that assists ankle extension.
    Galle S; Malcolm P; Derave W; De Clercq D
    Gait Posture; 2013 Jul; 38(3):495-9. PubMed ID: 23465319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leg stiffness primarily depends on ankle stiffness during human hopping.
    Farley CT; Morgenroth DC
    J Biomech; 1999 Mar; 32(3):267-73. PubMed ID: 10093026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gait comparison of subjects with hemiplegia walking unbraced, with ankle-foot orthosis, and with Air-Stirrup brace.
    Burdett RG; Borello-France D; Blatchly C; Potter C
    Phys Ther; 1988 Aug; 68(8):1197-203. PubMed ID: 3399515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running.
    Joseph CW; Bradshaw EJ; Kemp J; Clark RA
    J Appl Biomech; 2013 Aug; 29(4):386-94. PubMed ID: 22923423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.