BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 16179801)

  • 1. Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions.
    Inui M; Kawaguchi H; Murakami S; Vertès AA; Yukawa H
    J Mol Microbiol Biotechnol; 2004; 8(4):243-54. PubMed ID: 16179801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions.
    Inui M; Murakami S; Okino S; Kawaguchi H; Vertès AA; Yukawa H
    J Mol Microbiol Biotechnol; 2004; 7(4):182-96. PubMed ID: 15383716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation.
    Tsuge Y; Uematsu K; Yamamoto S; Suda M; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5573-82. PubMed ID: 25808520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Corynebacterium glutamicum for the production of pyruvate.
    Wieschalka S; Blombach B; Eikmanns BJ
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):449-59. PubMed ID: 22228312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation.
    Sasaki M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2010 Apr; 86(4):1057-66. PubMed ID: 20012280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.
    Jojima T; Noburyu R; Sasaki M; Tajima T; Suda M; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1165-72. PubMed ID: 25421564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain.
    Okino S; Noburyu R; Suda M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):459-64. PubMed ID: 18777022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of metabolic pathways for bioconversion of lignocellulose to ethanol through genetic engineering.
    Chen J; Zhang W; Tan L; Wang Y; He G
    Biotechnol Adv; 2009; 27(5):593-8. PubMed ID: 19401227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation.
    Okino S; Suda M; Fujikura K; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Mar; 78(3):449-54. PubMed ID: 18188553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering.
    Neuner A; Heinzle E
    Biotechnol J; 2011 Mar; 6(3):318-29. PubMed ID: 21370474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation.
    Yamamoto S; Suda M; Niimi S; Inui M; Yukawa H
    Biotechnol Bioeng; 2013 Nov; 110(11):2938-48. PubMed ID: 23737329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation.
    Jojima T; Fujii M; Mori E; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):159-65. PubMed ID: 20217078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering lactic acid bacteria with pyruvate decarboxylase and alcohol dehydrogenase genes for ethanol production from Zymomonas mobilis.
    Nichols NN; Dien BS; Bothast RJ
    J Ind Microbiol Biotechnol; 2003 May; 30(5):315-21. PubMed ID: 12750944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced production of ethanol from glycerol by engineered Hansenula polymorpha expressing pyruvate decarboxylase and aldehyde dehydrogenase genes from Zymomonas mobilis.
    Hong WK; Kim CH; Heo SY; Luo LH; Oh BR; Seo JW
    Biotechnol Lett; 2010 Aug; 32(8):1077-82. PubMed ID: 20354759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum.
    Kawaguchi H; Sasaki M; Vertès AA; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1053-62. PubMed ID: 17965859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum.
    Blombach B; Schreiner ME; Moch M; Oldiges M; Eikmanns BJ
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):615-23. PubMed ID: 17333167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity of metabolic shift in response to oxygen deprivation in Corynebacterium glutamicum and its close relatives.
    Yamamoto S; Sakai M; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2011 May; 90(3):1051-61. PubMed ID: 21327408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioethanol production by heterologous expression of Pdc and AdhII in Streptomyces lividans.
    Lee JS; Chi WJ; Hong SK; Yang JW; Chang YK
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):6089-97. PubMed ID: 23681589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions.
    Hasegawa S; Suda M; Uematsu K; Natsuma Y; Hiraga K; Jojima T; Inui M; Yukawa H
    Appl Environ Microbiol; 2013 Feb; 79(4):1250-7. PubMed ID: 23241971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ethanol-tolerant recombinant Escherichia coli expressing Zymomonas mobilis pdc and adhB genes for enhanced ethanol production from xylose.
    Wang Z; Chen M; Xu Y; Li S; Lu W; Ping S; Zhang W; Lin M
    Biotechnol Lett; 2008 Apr; 30(4):657-63. PubMed ID: 18034308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.