These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 16180841)

  • 1. Molecular approaches to solar energy conversion with coordination compounds anchored to semiconductor surfaces.
    Meyer GJ
    Inorg Chem; 2005 Oct; 44(20):6852-64. PubMed ID: 16180841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces.
    Ardo S; Meyer GJ
    Chem Soc Rev; 2009 Jan; 38(1):115-64. PubMed ID: 19088971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of photoinduced self-exchange reactions at molecule-semiconductor interfaces by transient polarization spectroscopy: lateral intermolecular energy and hole transfer across sensitized TiO2 thin films.
    Ardo S; Meyer GJ
    J Am Chem Soc; 2011 Oct; 133(39):15384-96. PubMed ID: 21861499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces.
    Lewis NS
    Inorg Chem; 2005 Oct; 44(20):6900-11. PubMed ID: 16180845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nuclear isotope effect for interfacial electron transfer: excited-state electron injection from Ru ammine compounds to nanocrystalline TiO2.
    Liu F; Meyer GJ
    J Am Chem Soc; 2005 Jan; 127(3):824-5. PubMed ID: 15656606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward exceeding the Shockley-Queisser limit: photoinduced interfacial charge transfer processes that store energy in excess of the equilibrated excited state.
    Hoertz PG; Staniszewski A; Marton A; Higgins GT; Incarvito CD; Rheingold AL; Meyer GJ
    J Am Chem Soc; 2006 Jun; 128(25):8234-45. PubMed ID: 16787088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dye sensitization of single crystal semiconductor electrodes.
    Spitler MT; Parkinson BA
    Acc Chem Res; 2009 Dec; 42(12):2017-29. PubMed ID: 19924998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the dependence of interfacial charge-transfer rate constants on the reorganization energy of redox species at n-ZnO/H2O interfaces.
    Hamann TW; Gstrein F; Brunschwig BS; Lewis NS
    J Am Chem Soc; 2005 Oct; 127(40):13949-54. PubMed ID: 16201817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial charge-transfer absorption: 3. Application to semiconductor-molecule assemblies.
    Creutz C; Brunschwig BS; Sutin N
    J Phys Chem B; 2006 Dec; 110(50):25181-90. PubMed ID: 17165962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of the photoexcited electron at the chromophore-semiconductor interface.
    Prezhdo OV; Duncan WR; Prezhdo VV
    Acc Chem Res; 2008 Feb; 41(2):339-48. PubMed ID: 18281950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.
    O'Regan BC; Durrant JR
    Acc Chem Res; 2009 Nov; 42(11):1799-808. PubMed ID: 19754041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinduced electron injection from Ru(dcbpy)2(NCS)2 to SnO2 and TiO2 nanocrystalline films.
    Benkö G; Myllyperkiö P; Pan J; Yartsev AP; Sundström V
    J Am Chem Soc; 2003 Feb; 125(5):1118-9. PubMed ID: 12553784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial charge-transfer switch: ruthenium-dppz compounds anchored to nanocrystalline TiO2.
    Delgadillo A; Arias M; Leiva AM; Loeb B; Meyer GJ
    Inorg Chem; 2006 Jul; 45(15):5721-3. PubMed ID: 16841970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoinduced charge carrier dynamics of Zn-porphyrin-TiO2 electrodes: the key role of charge recombination for solar cell performance.
    Imahori H; Kang S; Hayashi H; Haruta M; Kurata H; Isoda S; Canton SE; Infahsaeng Y; Kathiravan A; Pascher T; Chábera P; Yartsev AP; Sundström V
    J Phys Chem A; 2011 Apr; 115(16):3679-90. PubMed ID: 20961148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoinduced ultrafast dynamics of coumarin 343 sensitized p-type-nanostructured NiO films.
    Morandeira A; Boschloo G; Hagfeldt A; Hammarström L
    J Phys Chem B; 2005 Oct; 109(41):19403-10. PubMed ID: 16853506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoelectrochemical properties of supramolecular species containing porphyrin and ruthenium complexes on TiO(2) films.
    Nogueira AF; Formiga AL; Winnischofer H; Nakamura M; Engelmann FM; Araki K; Toma HE
    Photochem Photobiol Sci; 2004 Jan; 3(1):56-62. PubMed ID: 14743280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial charge-transfer absorption: semiclassical treatment.
    Creutz C; Brunschwig BS; Sutin N
    J Phys Chem B; 2005 May; 109(20):10251-60. PubMed ID: 16852242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.