These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 16180939)

  • 1. Testing and implementing signal impact analysis in a regulatory setting: results of a pilot study.
    Heeley E; Waller P; Moseley J
    Drug Saf; 2005; 28(10):901-6. PubMed ID: 16180939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of patient reporting of adverse drug reactions to the UK 'Yellow Card Scheme': literature review, descriptive and qualitative analyses, and questionnaire surveys.
    Avery AJ; Anderson C; Bond CM; Fortnum H; Gifford A; Hannaford PC; Hazell L; Krska J; Lee AJ; McLernon DJ; Murphy E; Shakir S; Watson MC
    Health Technol Assess; 2011 May; 15(20):1-234, iii-iv. PubMed ID: 21545758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports.
    Evans SJ; Waller PC; Davis S
    Pharmacoepidemiol Drug Saf; 2001; 10(6):483-6. PubMed ID: 11828828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a novel regulatory pharmacovigilance prioritisation system: an evaluation of its performance at the UK Medicines and Healthcare products Regulatory Agency.
    Seabroke S; Wise L; Waller P
    Drug Saf; 2013 Oct; 36(10):1025-32. PubMed ID: 23821159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Criteria revision and performance comparison of three methods of signal detection applied to the spontaneous reporting database of a pharmaceutical manufacturer.
    Matsushita Y; Kuroda Y; Niwa S; Sonehara S; Hamada C; Yoshimura I
    Drug Saf; 2007; 30(8):715-26. PubMed ID: 17696584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact analysis of signals detected from spontaneous adverse drug reaction reporting data.
    Waller P; Heeley E; Moseley J
    Drug Saf; 2005; 28(10):843-50. PubMed ID: 16180935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The validity and reliability of a signal impact assessment tool.
    Rolfes L; Kolfschoten J; van Hunsel F; van Puijenbroek E
    Pharmacoepidemiol Drug Saf; 2016 Jul; 25(7):815-9. PubMed ID: 27193557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The value of time-to-onset in statistical signal detection of adverse drug reactions: a comparison with disproportionality analysis in spontaneous reports from the Netherlands.
    Scholl JH; van Puijenbroek EP
    Pharmacoepidemiol Drug Saf; 2016 Dec; 25(12):1361-1367. PubMed ID: 27686554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying quantitative methods for detecting new drug safety signals in pharmacovigilance national database.
    Shalviri G; Mohammad K; Majdzadeh R; Gholami K
    Pharmacoepidemiol Drug Saf; 2007 Oct; 16(10):1136-40. PubMed ID: 17705214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Automated System Combining Safety Signal Detection and Prioritization from Healthcare Databases: A Pilot Study.
    Arnaud M; Bégaud B; Thiessard F; Jarrion Q; Bezin J; Pariente A; Salvo F
    Drug Saf; 2018 Apr; 41(4):377-387. PubMed ID: 29185236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for signal detection of adverse drug reactions based on proportional reporting ratios.
    Wei JX; Li M; Sun YH; Lu Y; Xu HM
    Pharm World Sci; 2010 Oct; 32(5):658-62. PubMed ID: 20676936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of statistical signal detection methods within and across spontaneous reporting databases.
    Candore G; Juhlin K; Manlik K; Thakrar B; Quarcoo N; Seabroke S; Wisniewski A; Slattery J
    Drug Saf; 2015 Jun; 38(6):577-87. PubMed ID: 25899605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of stratification on adverse drug reaction surveillance.
    Hopstadius J; Norén GN; Bate A; Edwards IR
    Drug Saf; 2008; 31(11):1035-48. PubMed ID: 18840023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supervised signal detection for adverse drug reactions in medication dispensing data.
    Hoang T; Liu J; Roughead E; Pratt N; Li J
    Comput Methods Programs Biomed; 2018 Jul; 161():25-38. PubMed ID: 29852965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative performance of two quantitative safety signalling methods: implications for use in a pharmacovigilance department.
    Almenoff JS; LaCroix KK; Yuen NA; Fram D; DuMouchel W
    Drug Saf; 2006; 29(10):875-87. PubMed ID: 16970511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of disproportionality analysis methods in national adverse drug reaction databases of China.
    Hou Y; Ye X; Wu G; Cheng G; Du X; He J
    Expert Opin Drug Saf; 2014 Jul; 13(7):853-7. PubMed ID: 24918197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluvastatin and hepatic reactions: a signal from spontaneous reporting in Italy.
    Conforti A; Magro L; Moretti U; Scotto S; Motola D; Salvo F; Ros B; Leone R
    Drug Saf; 2006; 29(12):1163-72. PubMed ID: 17147462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential use of data-mining algorithms for the detection of 'surprise' adverse drug reactions.
    Hauben M; Horn S; Reich L
    Drug Saf; 2007; 30(2):143-55. PubMed ID: 17253879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and evaluation of a possible signal of exacerbation of colitis during rofecoxib treatment, using Prescription-Event Monitoring data.
    Layton D; Heeley E; Shakir SA
    J Clin Pharm Ther; 2004 Apr; 29(2):171-81. PubMed ID: 15068407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal detection of methylphenidate by comparing a spontaneous reporting database with a claims database.
    Kim J; Kim M; Ha JH; Jang J; Hwang M; Lee BK; Chung MW; Yoo TM; Kim MJ
    Regul Toxicol Pharmacol; 2011 Nov; 61(2):154-60. PubMed ID: 21510997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.