BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 16181415)

  • 1. Immobilization stress causes increases in tetrahydrobiopterin, dopamine, and neuromelanin and oxidative damage in the nigrostriatal system.
    Kim ST; Choi JH; Chang JW; Kim SW; Hwang O
    J Neurochem; 2005 Oct; 95(1):89-98. PubMed ID: 16181415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of striatal dopaminergic fibers after intraventricular injection of tetrahydrobiopterin in rat brain.
    Kim ST; Chang JW; Hong HN; Hwang O
    Neurosci Lett; 2004 Apr; 359(1-2):69-72. PubMed ID: 15050714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term glial cell line-derived neurotrophic factor overexpression in the intact nigrostriatal system in rats leads to a decrease of dopamine and increase of tetrahydrobiopterin production.
    Sajadi A; Bauer M; Thöny B; Aebischer P
    J Neurochem; 2005 Jun; 93(6):1482-6. PubMed ID: 15935064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetrahydrobiopterin is released from and causes preferential death of catecholaminergic cells by oxidative stress.
    Choi HJ; Jang YJ; Kim HJ; Hwang O
    Mol Pharmacol; 2000 Sep; 58(3):633-40. PubMed ID: 10953058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetrahydrobiopterin causes mitochondrial dysfunction in dopaminergic cells: implications for Parkinson's disease.
    Choi HJ; Lee SY; Cho Y; No H; Kim SW; Hwang O
    Neurochem Int; 2006 Mar; 48(4):255-62. PubMed ID: 16343695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L-deprenyl protects against rotenone-induced, oxidative stress-mediated dopaminergic neurodegeneration in rats.
    Saravanan KS; Sindhu KM; Senthilkumar KS; Mohanakumar KP
    Neurochem Int; 2006 Jul; 49(1):28-40. PubMed ID: 16490285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute neurotoxic effects of the fungal metabolite ochratoxin-A.
    Sava V; Reunova O; Velasquez A; Harbison R; Sánchez-Ramos J
    Neurotoxicology; 2006 Jan; 27(1):82-92. PubMed ID: 16140385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix metalloproteinase-3 contributes to vulnerability of the nigral dopaminergic neurons.
    Kim ST; Kim EM; Choi JH; Son HJ; Ji IJ; Joh TH; Chung SJ; Hwang O
    Neurochem Int; 2010 Jan; 56(1):161-7. PubMed ID: 19815046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective effect of bromocriptine against BH4-induced Cath.a cell death involving up-regulation of antioxidant enzymes.
    Lim JH; Kim SS; Boo DH; No H; Kang BY; Kim EM; Hwang O; Choi HJ
    Neurosci Lett; 2009 Feb; 451(3):185-9. PubMed ID: 19146917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of vesicular monoamine transporter enhances vulnerability of dopaminergic cells: relevance to Parkinson's disease.
    Choi HJ; Lee SY; Cho Y; Hwang O
    Neurochem Int; 2005 Mar; 46(4):329-35. PubMed ID: 15707697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson's disease.
    Chaturvedi RK; Shukla S; Seth K; Chauhan S; Sinha C; Shukla Y; Agrawal AK
    Neurobiol Dis; 2006 May; 22(2):421-34. PubMed ID: 16480889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estrogen modifies stress response of catecholamine biosynthetic enzyme genes and cardiovascular system in ovariectomized female rats.
    Serova LI; Maharjan S; Sabban EL
    Neuroscience; 2005; 132(2):249-59. PubMed ID: 15802180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particular vulnerability of rat mesencephalic dopaminergic neurons to tetrahydrobiopterin: Relevance to Parkinson's disease.
    Lee SY; Moon Y; Hee Choi D; Jin Choi H; Hwang O
    Neurobiol Dis; 2007 Jan; 25(1):112-20. PubMed ID: 17049260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurodegenerative alterations in the nigrostriatal system of trkB hypomorphic mice.
    Zaman V; Nelson ME; Gerhardt GA; Rohrer B
    Exp Neurol; 2004 Dec; 190(2):337-46. PubMed ID: 15530873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increases in TH immunoreactivity, neuromelanin and degeneration in the substantia nigra of middle aged mice.
    Kim ST; Choi JH; Kim D; Hwang O
    Neurosci Lett; 2006 Apr; 396(3):263-8. PubMed ID: 16377085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of cyclooxygenase-2 in tetrahydrobiopterin-induced dopamine oxidation.
    Chae SW; Bang YJ; Kim KM; Lee KY; Kang BY; Kim EM; Inoue H; Hwang O; Choi HJ
    Biochem Biophys Res Commun; 2007 Aug; 359(3):735-41. PubMed ID: 17560944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of dopaminergic degeneration and oxidative stress by inhibition of angiotensin converting enzyme in a MPTP model of parkinsonism.
    Muñoz A; Rey P; Guerra MJ; Mendez-Alvarez E; Soto-Otero R; Labandeira-Garcia JL
    Neuropharmacology; 2006 Jul; 51(1):112-20. PubMed ID: 16678218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopaminergic and serotoninergic deficiencies in young adult rats prenatally exposed to the bacterial lipopolysaccharide.
    Wang S; Yan JY; Lo YK; Carvey PM; Ling Z
    Brain Res; 2009 Apr; 1265():196-204. PubMed ID: 19236855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degeneration of the nigrostriatal pathway and induction of motor deficit by tetrahydrobiopterin: an in vivo model relevant to Parkinson's disease.
    Kim SW; Jang YJ; Chang JW; Hwang O
    Neurobiol Dis; 2003 Jul; 13(2):167-76. PubMed ID: 12828940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of tetrahydrobiopterin: its relevance in monoaminergic neurons and neurological disorders.
    Ichinose H; Nomura T; Sumi-Ichinose C
    Chem Rec; 2008; 8(6):378-85. PubMed ID: 19107867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.