BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 16181424)

  • 1. Regulation of intracellular cyclic GMP levels in olfactory sensory neurons.
    Moon C; Simpson PJ; Tu Y; Cho H; Ronnett GV
    J Neurochem; 2005 Oct; 95(1):200-9. PubMed ID: 16181424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay among cGMP, cAMP, and Ca2+ in living olfactory sensory neurons in vitro and in vivo.
    Pietrobon M; Zamparo I; Maritan M; Franchi SA; Pozzan T; Lodovichi C
    J Neurosci; 2011 Jun; 31(23):8395-405. PubMed ID: 21653844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Odorants induce the phosphorylation of the cAMP response element binding protein in olfactory receptor neurons.
    Moon C; Sung YK; Reddy R; Ronnett GV
    Proc Natl Acad Sci U S A; 1999 Dec; 96(25):14605-10. PubMed ID: 10588752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional identification of phosphodiesterase activity in human trabecular meshwork cells.
    Zhou L; Thompson WJ; Potter DE
    J Ocul Pharmacol Ther; 2000 Aug; 16(4):317-22. PubMed ID: 10977127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of odorant adaptation in the olfactory receptor cell.
    Kurahashi T; Menini A
    Nature; 1997 Feb; 385(6618):725-9. PubMed ID: 9034189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Olfactory signal transduction in the mouse septal organ.
    Ma M; Grosmaitre X; Iwema CL; Baker H; Greer CA; Shepherd GM
    J Neurosci; 2003 Jan; 23(1):317-24. PubMed ID: 12514230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway.
    Juilfs DM; Fülle HJ; Zhao AZ; Houslay MD; Garbers DL; Beavo JA
    Proc Natl Acad Sci U S A; 1997 Apr; 94(7):3388-95. PubMed ID: 9096404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord.
    de Vente J; Markerink-van Ittersum M; Vles JS
    J Chem Neuroanat; 2006 Jun; 31(4):275-303. PubMed ID: 16621445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-sensitive particulate guanylyl cyclase as a modulator of cAMP in olfactory receptor neurons.
    Moon C; Jaberi P; Otto-Bruc A; Baehr W; Palczewski K; Ronnett GV
    J Neurosci; 1998 May; 18(9):3195-205. PubMed ID: 9547228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast adaptation in mouse olfactory sensory neurons does not require the activity of phosphodiesterase.
    Boccaccio A; Lagostena L; Hagen V; Menini A
    J Gen Physiol; 2006 Aug; 128(2):171-84. PubMed ID: 16880265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental appearance of pineal adrenergic-->guanosine 3',5'-monophosphate response is determined by a process down-stream from elevation of intracellular Ca2+: possible involvement of a diffusible factor.
    White BH; Klein DC
    Endocrinology; 1993 Mar; 132(3):1026-34. PubMed ID: 8095011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-regulation of intracellular cGMP and cAMP in cultured human corpus cavernosum smooth muscle cells.
    Kim NN; Huang Y; Moreland RB; Kwak SS; Goldstein I; Traish A
    Mol Cell Biol Res Commun; 2000 Jul; 4(1):10-4. PubMed ID: 11152621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and activity of cGMP-dependent phosphodiesterases is up-regulated by lipopolysaccharide (LPS) in rat peritoneal macrophages.
    Witwicka H; Kobiałka M; Siednienko J; Mitkiewicz M; Gorczyca WA
    Biochim Biophys Acta; 2007 Feb; 1773(2):209-18. PubMed ID: 17141339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of regulation of olfactory transduction and adaptation in the olfactory cilium.
    Antunes G; Sebastião AM; Simoes de Souza FM
    PLoS One; 2014; 9(8):e105531. PubMed ID: 25144232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic GMP metabolism and its role in brain physiology.
    Domek-Łopacińska K; Strosznajder JB
    J Physiol Pharmacol; 2005 Mar; 56 Suppl 2():15-34. PubMed ID: 16077188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct activation of PDE5 by cGMP: long-term effects within NO/cGMP signaling.
    Mullershausen F; Friebe A; Feil R; Thompson WJ; Hofmann F; Koesling D
    J Cell Biol; 2003 Mar; 160(5):719-27. PubMed ID: 12604588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIV-1 coat protein gp120 decreases NO-dependent cyclic GMP accumulation in rat brain astroglia by increasing cyclic GMP phosphodiesterase activity.
    Navarra M; Baltrons MA; Sardón T; Pedraza CE; García A
    Neurochem Int; 2004 Nov; 45(6):937-46. PubMed ID: 15312988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for cAMP-mediated cGMP response in Dictyostelium discoideum.
    Valkema R; Van Haastert PJ
    Mol Biol Cell; 1994 May; 5(5):575-85. PubMed ID: 7919538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons.
    Yan C; Zhao AZ; Bentley JK; Loughney K; Ferguson K; Beavo JA
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9677-81. PubMed ID: 7568196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphodiesterase regulation of alcohol drinking in rodents.
    Logrip ML
    Alcohol; 2015 Dec; 49(8):795-802. PubMed ID: 26095589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.