BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16181673)

  • 1. Biodegradable stents with elastic memory.
    Venkatraman SS; Tan LP; Joso JF; Boey YC; Wang X
    Biomaterials; 2006 Mar; 27(8):1573-8. PubMed ID: 16181673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape memory in un-cross-linked biodegradable polymers.
    Wong YS; Xiong Y; Venkatraman SS; Boey FY
    J Biomater Sci Polym Ed; 2008; 19(2):175-91. PubMed ID: 18237491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paclitaxel releasing films consisting of poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) and their potential as biodegradable stent coatings.
    Westedt U; Wittmar M; Hellwig M; Hanefeld P; Greiner A; Schaper AK; Kissel T
    J Control Release; 2006 Mar; 111(1-2):235-46. PubMed ID: 16466824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of biodegradable drug releasing polymeric cardiovascular stents and in vitro evaluation.
    Sarisözen C; Arica B; Hincal AA; Caliş S
    J Microencapsul; 2009 Sep; 26(6):501-12. PubMed ID: 18932059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collapse pressures of bilayered biodegradable stents.
    Tan LP; Venkatraman SS; Joso JF; Boey FY
    J Biomed Mater Res B Appl Biomater; 2006 Oct; 79(1):102-7. PubMed ID: 16544311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance.
    Grayson AC; Cima MJ; Langer R
    Biomaterials; 2005 May; 26(14):2137-45. PubMed ID: 15576189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of radio-opaque filler on biodegradable stent properties.
    Chan WA; Bini TB; Venkatraman SS; Boey FY
    J Biomed Mater Res A; 2006 Oct; 79(1):47-52. PubMed ID: 16758453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled release of sirolimus from a multilayered PLGA stent matrix.
    Wang X; Venkatraman SS; Boey FY; Loo JS; Tan LP
    Biomaterials; 2006 Nov; 27(32):5588-95. PubMed ID: 16879865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental study of heat adaptation of bioabsorbable craniofacial meshes and plates.
    Pietrzak WS; Eppley BL
    J Craniofac Surg; 2007 May; 18(3):540-5. PubMed ID: 17538315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the use of a biodegradable ureteral stent after retrograde endopyelotomy in a porcine model.
    Olweny EO; Landman J; Andreoni C; Collyer W; Kerbl K; Onciu M; Välimaa T; Clayman RV
    J Urol; 2002 May; 167(5):2198-202. PubMed ID: 11956478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro.
    Liao S; Watari F; Zhu Y; Uo M; Akasaka T; Wang W; Xu G; Cui F
    Dent Mater; 2007 Sep; 23(9):1120-8. PubMed ID: 17095082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved biocompatibility of poly(lactic-co-glycolic acid) orv and poly-L-lactic acid blended with nanoparticulate amorphous calcium phosphate in vascular stent applications.
    Zheng X; Wang Y; Lan Z; Lyu Y; Feng G; Zhang Y; Tagusari S; Kislauskis E; Robich MP; McCarthy S; Sellke FW; Laham R; Jiang X; Gu WW; Wu T
    J Biomed Nanotechnol; 2014 Jun; 10(6):900-10. PubMed ID: 24749387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biodegradable slotted tube stent based on poly(L-lactide) and poly(4-hydroxybutyrate) for rapid balloon-expansion.
    Grabow N; Bünger CM; Schultze C; Schmohl K; Martin DP; Williams SF; Sternberg K; Schmitz KP
    Ann Biomed Eng; 2007 Dec; 35(12):2031-8. PubMed ID: 17846893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of solvent processing on polyester bioabsorbable polymers.
    Manson J; Dixon D
    J Biomater Appl; 2012 Jan; 26(5):623-34. PubMed ID: 20659960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expansion and bioabsorption of the self-reinforced lactic and glycolic acid copolymer prostatic spiral stent.
    Laaksovirta S; Talja M; Välimaa T; Isotalo T; Törmälä P; Tammela TL
    J Urol; 2001 Sep; 166(3):919-22. PubMed ID: 11490246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapidly self-expandable polymeric stents with a shape-memory property.
    Chen MC; Tsai HW; Chang Y; Lai WY; Mi FL; Liu CT; Wong HS; Sung HW
    Biomacromolecules; 2007 Sep; 8(9):2774-80. PubMed ID: 17676896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of multi-layered biodegradable drug delivery device based on micro-structuring of PLGA polymers.
    Ryu WH; Vyakarnam M; Greco RS; Prinz FB; Fasching RJ
    Biomed Microdevices; 2007 Dec; 9(6):845-53. PubMed ID: 17577671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immersed multilayer biodegradable ureteral stent with reformed biodegradation: An in vitro experiment.
    Yang G; Xie H; Huang Y; Lv Y; Zhang M; Shang Y; Zhou J; Wang L; Wang JY; Chen F
    J Biomater Appl; 2017 Mar; 31(8):1235-1244. PubMed ID: 28274192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility properties of a new braided biodegradable urethral stent: a comparison with a biodegradable spiral and a braided metallic stent in the rabbit urethra.
    Isotalo TM; Nuutine JP; Vaajanen A; Martikainen PM; Laurila M; Törmälä P; Talja M; Tammela TL
    BJU Int; 2006 Apr; 97(4):856-9. PubMed ID: 16536787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of polymer composition on the gelation behavior of PLGA-g-PEG biodegradable thermoreversible gels.
    Tarasevich BJ; Gutowska A; Li XS; Jeong BM
    J Biomed Mater Res A; 2009 Apr; 89(1):248-54. PubMed ID: 18464255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.