These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 16182287)

  • 41. Formation of a Snf1-Mec1-Atg1 Module on Mitochondria Governs Energy Deprivation-Induced Autophagy by Regulating Mitochondrial Respiration.
    Yi C; Tong J; Lu P; Wang Y; Zhang J; Sun C; Yuan K; Xue R; Zou B; Li N; Xiao S; Dai C; Huang Y; Xu L; Li L; Chen S; Miao D; Deng H; Li H; Yu L
    Dev Cell; 2017 Apr; 41(1):59-71.e4. PubMed ID: 28399401
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The function and properties of the Azf1 transcriptional regulator change with growth conditions in Saccharomyces cerevisiae.
    Slattery MG; Liko D; Heideman W
    Eukaryot Cell; 2006 Feb; 5(2):313-20. PubMed ID: 16467472
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Overproduction of non-translatable mRNA silences. The transcription of Ty1 retrotransposons in S. cerevisiae via functional inactivation of the nuclear cap-binding complex and subsequent hyperstimulation of the TORC1 pathway.
    Wu X; Jiang YW
    Yeast; 2008 May; 25(5):327-47. PubMed ID: 18435413
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trehalose-6-phosphate synthesis controls yeast gluconeogenesis downstream and independent of SNF1.
    Deroover S; Ghillebert R; Broeckx T; Winderickx J; Rolland F
    FEMS Yeast Res; 2016 Jun; 16(4):. PubMed ID: 27189362
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Snf1 protein kinase controls the induction of genes of the iron uptake pathway at the diauxic shift in Saccharomyces cerevisiae.
    Haurie V; Boucherie H; Sagliocco F
    J Biol Chem; 2003 Nov; 278(46):45391-6. PubMed ID: 12960168
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of the yeast Snf1 protein kinase in invasive growth.
    Kuchin S; Vyas VK; Carlson M
    Biochem Soc Trans; 2003 Feb; 31(Pt 1):175-7. PubMed ID: 12546679
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae.
    Westergaard SL; Oliveira AP; Bro C; Olsson L; Nielsen J
    Biotechnol Bioeng; 2007 Jan; 96(1):134-45. PubMed ID: 16878332
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Relationship of the cAMP-dependent protein kinase pathway to the SNF1 protein kinase and invertase expression in Saccharomyces cerevisiae.
    Hubbard EJ; Yang XL; Carlson M
    Genetics; 1992 Jan; 130(1):71-80. PubMed ID: 1310088
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein kinases Elm1 and Sak1 of Saccharomyces cerevisiae exerted different functions under high-glucose and heat shock stresses.
    Wang L; Yang X; Jiang HY; Song ZM; Lin X; Hu XP; Li CF
    Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):2029-2042. PubMed ID: 35194654
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SNF1 controls the glycolytic flux and mitochondrial respiration.
    Martinez-Ortiz C; Carrillo-Garmendia A; Correa-Romero BF; Canizal-García M; González-Hernández JC; Regalado-Gonzalez C; Olivares-Marin IK; Madrigal-Perez LA
    Yeast; 2019 Aug; 36(8):487-494. PubMed ID: 31074533
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activation of the cyclin-dependent kinase CTDK-I requires the heterodimerization of two unstable subunits.
    Hautbergue G; Goguel V
    J Biol Chem; 2001 Mar; 276(11):8005-13. PubMed ID: 11118453
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex.
    Sterner DE; Lee JM; Hardin SE; Greenleaf AL
    Mol Cell Biol; 1995 Oct; 15(10):5716-24. PubMed ID: 7565723
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Resveratrol increases glycolytic flux in Saccharomyces cerevisiae via a SNF1-dependet mechanism.
    Madrigal-Perez LA; Nava GM; González-Hernández JC; Ramos-Gomez M
    J Bioenerg Biomembr; 2015 Aug; 47(4):331-6. PubMed ID: 26091703
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced amino acid utilization sustains growth of cells lacking Snf1/AMPK.
    Nicastro R; Tripodi F; Guzzi C; Reghellin V; Khoomrung S; Capusoni C; Compagno C; Airoldi C; Nielsen J; Alberghina L; Coccetti P
    Biochim Biophys Acta; 2015 Jul; 1853(7):1615-25. PubMed ID: 25841981
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure and expression of the SNF1 gene of Saccharomyces cerevisiae.
    Celenza JL; Carlson M
    Mol Cell Biol; 1984 Jan; 4(1):54-60. PubMed ID: 6366513
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Snf1 protein kinase: a key player in the response to cellular stress in yeast.
    Sanz P
    Biochem Soc Trans; 2003 Feb; 31(Pt 1):178-81. PubMed ID: 12546680
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nutritional stress in eukaryotic cells: oxidative species and regulation of survival in time of scarceness.
    Ferretti AC; Larocca MC; Favre C
    Mol Genet Metab; 2012 Feb; 105(2):186-92. PubMed ID: 22192525
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A network biology approach to aging in yeast.
    Lorenz DR; Cantor CR; Collins JJ
    Proc Natl Acad Sci U S A; 2009 Jan; 106(4):1145-50. PubMed ID: 19164565
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glucose depletion causes haploid invasive growth in yeast.
    Cullen PJ; Sprague GF
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13619-24. PubMed ID: 11095711
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiple roles of CTDK-I throughout the cell.
    Srivastava R; Duan R; Ahn SH
    Cell Mol Life Sci; 2019 Jul; 76(14):2789-2797. PubMed ID: 31037337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.