These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
532 related articles for article (PubMed ID: 16182371)
1. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. Zou C; Wang Y; Shen Z J Biochem Biophys Methods; 2005 Sep; 64(3):207-15. PubMed ID: 16182371 [TBL] [Abstract][Full Text] [Related]
2. A real-time method of imaging glucose uptake in single, living mammalian cells. Yamada K; Saito M; Matsuoka H; Inagaki N Nat Protoc; 2007; 2(3):753-62. PubMed ID: 17406637 [TBL] [Abstract][Full Text] [Related]
3. Novel use of fluorescent glucose analogues to identify a new class of triazine-based insulin mimetics possessing useful secondary effects. Jung DW; Ha HH; Zheng X; Chang YT; Williams DR Mol Biosyst; 2011 Feb; 7(2):346-58. PubMed ID: 20927436 [TBL] [Abstract][Full Text] [Related]
4. Syntheses of 2-NBDG analogues for monitoring stereoselective uptake of D-glucose. Yamamoto T; Tanaka S; Suga S; Watanabe S; Nagatomo K; Sasaki A; Nishiuchi Y; Teshima T; Yamada K Bioorg Med Chem Lett; 2011 Jul; 21(13):4088-96. PubMed ID: 21636274 [TBL] [Abstract][Full Text] [Related]
5. Development of fluorescent glucose bioprobes and their application on real-time and quantitative monitoring of glucose uptake in living cells. Lee HY; Lee JJ; Park J; Park SB Chemistry; 2011 Jan; 17(1):143-50. PubMed ID: 21207611 [TBL] [Abstract][Full Text] [Related]
6. Existence of two parallel mechanisms for glucose uptake in heterotrophic plant cells. Etxeberria E; González P; Tomlinson P; Pozueta-Romero J J Exp Bot; 2005 Jul; 56(417):1905-12. PubMed ID: 15911561 [TBL] [Abstract][Full Text] [Related]
7. A Fluorescence-Based Assay for Measuring Glucose Uptake in Living Melanoma Cells. Grahovac J; Pavlović M; Ostojić M Methods Mol Biol; 2021; 2265():73-80. PubMed ID: 33704706 [TBL] [Abstract][Full Text] [Related]
8. Confocal microscopy study of the different patterns of 2-NBDG uptake in rabbit enterocytes in the apical and basal zone. Román Y; Alfonso A; Louzao MC; Vieytes MR; Botana LM Pflugers Arch; 2001 Nov; 443(2):234-9. PubMed ID: 11713649 [TBL] [Abstract][Full Text] [Related]
9. Effect of drug-induced cytotoxicity on glucose uptake in Hodgkin's lymphoma cells. Banning U; Barthel H; Mauz-Körholz C; Kluge R; Körholz D; Sabri O Eur J Haematol; 2006 Aug; 77(2):102-8. PubMed ID: 16800842 [TBL] [Abstract][Full Text] [Related]
10. Flow cytometric analysis of glucose transport by rat brain cells. Aller CB; Ehmann S; Gilman-Sachs A; Snyder AK Cytometry; 1997 Mar; 27(3):262-8. PubMed ID: 9041115 [TBL] [Abstract][Full Text] [Related]
11. "Fluorescent glycogen" formation with sensibility for in vivo and in vitro detection. Louzao MC; Espiña B; Vieytes MR; Vega FV; Rubiolo JA; Baba O; Terashima T; Botana LM Glycoconj J; 2008 Aug; 25(6):503-10. PubMed ID: 17973187 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of glucose transport and its regulation by insulin in human monocytes using flow cytometry. Dimitriadis G; Maratou E; Boutati E; Psarra K; Papasteriades C; Raptis SA Cytometry A; 2005 Mar; 64(1):27-33. PubMed ID: 15688355 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose, a new fluorescent derivative of glucose, for viability assessment of yeast Candida albicans. Yoshioka K; Oh KB; Saito M; Nemoto Y; Matsuoka H Appl Microbiol Biotechnol; 1996 Nov; 46(4):400-4. PubMed ID: 8987729 [TBL] [Abstract][Full Text] [Related]
14. Examining glucose transport in single vascular smooth muscle cells with a fluorescent glucose analog. Lloyd PG; Hardin CD; Sturek M Physiol Res; 1999; 48(6):401-10. PubMed ID: 10783904 [TBL] [Abstract][Full Text] [Related]
15. Utilization of fluorescence tracer in hyperinsulinemic-euglycemic clamp test in mice. Ye F; Tao R; Cong W; Tian J; Liu Q J Biochem Biophys Methods; 2008 Apr; 70(6):978-84. PubMed ID: 18355922 [TBL] [Abstract][Full Text] [Related]
16. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Yoshioka K; Takahashi H; Homma T; Saito M; Oh KB; Nemoto Y; Matsuoka H Biochim Biophys Acta; 1996 Feb; 1289(1):5-9. PubMed ID: 8605231 [TBL] [Abstract][Full Text] [Related]
17. Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines. Millon SR; Ostrander JH; Brown JQ; Raheja A; Seewaldt VL; Ramanujam N Breast Cancer Res Treat; 2011 Feb; 126(1):55-62. PubMed ID: 20390344 [TBL] [Abstract][Full Text] [Related]
18. Aberrant Uptake of a Fluorescent L-Glucose Analogue (fLG) into Tumor Cells Expressing Malignant Phenotypes. Yamada K Biol Pharm Bull; 2018; 41(10):1508-1516. PubMed ID: 30270319 [TBL] [Abstract][Full Text] [Related]
19. 2-NBDG fluorescence imaging of hypermetabolic circulating tumor cells in mouse xenograft model of breast cancer. Cai H; Peng F J Fluoresc; 2013 Jan; 23(1):213-20. PubMed ID: 23054302 [TBL] [Abstract][Full Text] [Related]
20. Flow cytometric detection of transbilayer movement of fluorescent phospholipid analogues across the boar sperm plasma membrane: elimination of labeling artifacts. Gadella BM; Miller NG; Colenbrander B; van Golde LM; Harrison RA Mol Reprod Dev; 1999 May; 53(1):108-25. PubMed ID: 10230823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]