These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 16182540)
1. QSAR of the testosterone binding globulin affinity by means of correlation weighting of local invariants of the graph of atomic orbitals. Raska I; Toropov A Bioorg Med Chem; 2005 Dec; 13(24):6830-5. PubMed ID: 16182540 [TBL] [Abstract][Full Text] [Related]
2. Correlation weighting of valence shells in QSAR analysis of toxicity. Toropov AA; Benfenati E Bioorg Med Chem; 2006 Jun; 14(11):3923-8. PubMed ID: 16460943 [TBL] [Abstract][Full Text] [Related]
3. QSAR models for Daphnia toxicity of pesticides based on combinations of topological parameters of molecular structures. Toropov AA; Benfenati E Bioorg Med Chem; 2006 Apr; 14(8):2779-88. PubMed ID: 16377200 [TBL] [Abstract][Full Text] [Related]
4. QSAR models of quail dietary toxicity based on the graph of atomic orbitals. Toropov AA; Benfenati E Bioorg Med Chem Lett; 2006 Apr; 16(7):1941-3. PubMed ID: 16442289 [TBL] [Abstract][Full Text] [Related]
5. Prediction of aquatic toxicity: use of optimization of correlation weights of local graph invariants. Toropov AA; Schultz TW J Chem Inf Comput Sci; 2003; 43(2):560-7. PubMed ID: 12653522 [TBL] [Abstract][Full Text] [Related]
6. Optimisation of correlation weights of SMILES invariants for modelling oral quail toxicity. Toropov AA; Benfenati E Eur J Med Chem; 2007 May; 42(5):606-13. PubMed ID: 17218040 [TBL] [Abstract][Full Text] [Related]
7. SMILES as an alternative to the graph in QSAR modelling of bee toxicity. Toropov AA; Benfenati E Comput Biol Chem; 2007 Feb; 31(1):57-60. PubMed ID: 17275412 [TBL] [Abstract][Full Text] [Related]
8. An atom counting strategy towards analyzing the biological activity of sex hormones. Roy DR; Pal N; Mitra A; Bultinck P; Parthasarathi R; Subramanian V; Chattaraj PK Eur J Med Chem; 2007; 42(11-12):1365-9. PubMed ID: 17416442 [TBL] [Abstract][Full Text] [Related]
9. An updated steroid benchmark set and its application in the discovery of novel nanomolar ligands of sex hormone-binding globulin. Cherkasov A; Ban F; Santos-Filho O; Thorsteinson N; Fallahi M; Hammond GL J Med Chem; 2008 Apr; 51(7):2047-56. PubMed ID: 18330978 [TBL] [Abstract][Full Text] [Related]
10. OCWLGI descriptors: theory and praxis. Toropov AA; Toropova AP; Benfenati E; Gini G Curr Comput Aided Drug Des; 2013 Jun; 9(2):226-32. PubMed ID: 23700994 [TBL] [Abstract][Full Text] [Related]
11. 3D QSAR studies on protein tyrosine phosphatase 1B inhibitors: comparison of the quality and predictivity among 3D QSAR models obtained from different conformer-based alignments. Pandey G; Saxena AK J Chem Inf Model; 2006; 46(6):2579-90. PubMed ID: 17125198 [TBL] [Abstract][Full Text] [Related]
12. 3-D QSAR studies on histone deacetylase inhibitors. A GOLPE/GRID approach on different series of compounds. Ragno R; Simeoni S; Valente S; Massa S; Mai A J Chem Inf Model; 2006; 46(3):1420-30. PubMed ID: 16711762 [TBL] [Abstract][Full Text] [Related]
13. Magnesium effect on testosterone-SHBG association studied by a novel molecular chromatography approach. Excoffon L; Guillaume YC; Woronoff-Lemsi MC; André C J Pharm Biomed Anal; 2009 Feb; 49(2):175-80. PubMed ID: 19095394 [TBL] [Abstract][Full Text] [Related]
14. QSAR modelling for mutagenic potency of heteroaromatic amines by optimal SMILES-based descriptors. Toropov AA; Toropova AP; Benfenati E Chem Biol Drug Des; 2009 Mar; 73(3):301-12. PubMed ID: 19207466 [TBL] [Abstract][Full Text] [Related]
15. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation. Votano JR; Parham M; Hall LM; Hall LH; Kier LB; Oloff S; Tropsha A J Med Chem; 2006 Nov; 49(24):7169-81. PubMed ID: 17125269 [TBL] [Abstract][Full Text] [Related]
16. 3D QSAR comparative molecular field analysis on nonsteroidal farnesoid X receptor activators. Honório KM; Garratt RC; Polikarpov I; Andricopulo AD J Mol Graph Model; 2007 Mar; 25(6):921-7. PubMed ID: 17055759 [TBL] [Abstract][Full Text] [Related]
17. Development of classification model and QSAR model for predicting binding affinity of endocrine disrupting chemicals to human sex hormone-binding globulin. Liu H; Yang X; Lu R Chemosphere; 2016 Aug; 156():1-7. PubMed ID: 27156209 [TBL] [Abstract][Full Text] [Related]
18. Derivatives in discrete mathematics: a novel graph-theoretical invariant for generating new 2/3D molecular descriptors. I. Theory and QSPR application. Marrero-Ponce Y; Santiago OM; López YM; Barigye SJ; Torrens F J Comput Aided Mol Des; 2012 Nov; 26(11):1229-46. PubMed ID: 23124489 [TBL] [Abstract][Full Text] [Related]
19. Insight into the structural requirements of urokinase-type plasminogen activator inhibitors based on 3D QSAR CoMFA/CoMSIA models. Bhongade BA; Gadad AK J Med Chem; 2006 Jan; 49(2):475-89. PubMed ID: 16420035 [TBL] [Abstract][Full Text] [Related]
20. Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug-drug complex networks. Prado-Prado FJ; Martinez de la Vega O; Uriarte E; Ubeira FM; Chou KC; González-Díaz H Bioorg Med Chem; 2009 Jan; 17(2):569-75. PubMed ID: 19112024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]