These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 16182552)

  • 1. Vertebral cancellous bone turn-over: microcallus and bridges in backscatter electron microscopy.
    Banse X; Devogelaer JP; Holmyard D; Grynpas M
    Micron; 2005; 36(7-8):710-4. PubMed ID: 16182552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irreversible perforations in vertebral trabeculae?
    Banse X; Devogelaer JP; Delloye C; Lafosse A; Holmyard D; Grynpas M
    J Bone Miner Res; 2003 Jul; 18(7):1247-53. PubMed ID: 12854834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcallus formations of the cancellous bone: a quantitative analysis of the human spine.
    Hahn M; Vogel M; Amling M; Ritzel H; Delling G
    J Bone Miner Res; 1995 Sep; 10(9):1410-6. PubMed ID: 7502714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of microcallus in human cancellous bone.
    Blackburn J; Hodgskinson R; Currey JD; Mason JE
    J Orthop Res; 1992 Mar; 10(2):237-46. PubMed ID: 1740742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Micro-callus formation of spongiosa. An up to now underestimated repair mechanism of the skeletal system].
    Hahn M; Vogel M; Amling M; Grote HJ; Pösl M; Werner M; Delling G
    Pathologe; 1994 Oct; 15(5):297-302. PubMed ID: 7824440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Pathological research on isolated microcallus formation in 576 vertebrae].
    Yu Y
    Zhonghua Bing Li Xue Za Zhi; 1995 Feb; 24(1):33-5. PubMed ID: 7781113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perforation of cancellous bone trabeculae by damage-stimulated remodelling at resorption pits: a computational analysis.
    McNamara LM; Prendergast PJ
    Eur J Morphol; 2005; 42(1-2):99-109. PubMed ID: 16123029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructural classification of resorption lacunae and perforations in human proximal femora.
    Gentzsch C; Delling G; Kaiser E
    Calcif Tissue Int; 2003 Jun; 72(6):698-709. PubMed ID: 14562999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Osteoclastic resorption of trabeculae in osteoporotic femoral head: a scanning electron microscopic study].
    Chai BF; Tang XM; Zhou WR
    Zhonghua Wai Ke Za Zhi; 1994 Oct; 32(10):621-5. PubMed ID: 7750424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancellous and cortical bone architecture and turnover at the iliac crest of postmenopausal osteoporotic women treated with parathyroid hormone 1-84.
    Recker RR; Bare SP; Smith SY; Varela A; Miller MA; Morris SA; Fox J
    Bone; 2009 Jan; 44(1):113-9. PubMed ID: 18983947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical consequences of bone loss in cancellous bone.
    van der Linden JC; Homminga J; Verhaar JA; Weinans H
    J Bone Miner Res; 2001 Mar; 16(3):457-65. PubMed ID: 11277263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone density, strength, and formation in adult cathepsin K (-/-) mice.
    Pennypacker B; Shea M; Liu Q; Masarachia P; Saftig P; Rodan S; Rodan G; Kimmel D
    Bone; 2009 Feb; 44(2):199-207. PubMed ID: 18845279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of unloaded structures).
    Mosekilde L
    Bone Miner; 1990 Jul; 10(1):13-35. PubMed ID: 2397325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of cells in zones of bone resorption under microgravity and hypokinesia.
    Rodionova NV; Polkovenko OV; Oganov VS
    J Gravit Physiol; 2004 Jul; 11(2):P147-51. PubMed ID: 16237820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of cartilage in osteogenesis in the human fetal vertebral body.
    Martinez G; Carnazza ML
    Ital J Anat Embryol; 1994; 99(1):57-67. PubMed ID: 7755446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous PGE2 leads to net bone loss while intermittent PGE2 leads to net bone gain in lumbar vertebral bodies of adult female rats.
    Tian XY; Zhang Q; Zhao R; Setterberg RB; Zeng QQ; Iturria SJ; Ma YF; Jee WS
    Bone; 2008 May; 42(5):914-20. PubMed ID: 18316259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for reduced bone formation surface relative to bone resorption surface in female femoral fragility fracture patients.
    Tsangari H; Findlay DM; Zannettino AC; Pan B; Kuliwaba JS; Fazzalari NL
    Bone; 2006 Dec; 39(6):1226-35. PubMed ID: 16926124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the imprint of bone remodeling by atomic force microscopy.
    Hassenkam T; Jørgensen HL; Lauritzen JB
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Oct; 288(10):1087-94. PubMed ID: 16952172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cyclic vs. daily treatment with human parathyroid hormone (1-34) on murine bone structure and cellular activity.
    Iida-Klein A; Lu SS; Cosman F; Lindsay R; Dempster DW
    Bone; 2007 Feb; 40(2):391-8. PubMed ID: 17056311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trabecular microfractures in the femoral head with osteoporosis: analysis of microcallus formations by synchrotron radiation micro CT.
    Okazaki N; Chiba K; Taguchi K; Nango N; Kubota S; Ito M; Osaki M
    Bone; 2014 Jul; 64():82-7. PubMed ID: 24705007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.