BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 16183674)

  • 41. Novel poly(hydroxyalkanoates)-based composites containing Bioglass® and calcium sulfate for bone tissue engineering.
    García-García JM; Garrido L; Quijada-Garrido I; Kaschta J; Schubert DW; Boccaccini AR
    Biomed Mater; 2012 Oct; 7(5):054105. PubMed ID: 22972204
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioactive glass/ZrO2 composites for orthopaedic applications.
    Bellucci D; Sola A; Cannillo V
    Biomed Mater; 2014 Feb; 9(1):015005. PubMed ID: 24343516
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of long-term in vitro testing on the properties of bioactive glass-polysulfone composites.
    Oréfice R; West J; Latorre G; Hench L; Brennan A
    Biomacromolecules; 2010 Mar; 11(3):657-65. PubMed ID: 20108891
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dissolution and scanning electron microscopic studies of Ca,P particle-containing bioactive glasses.
    Kangasniemi IM; Vedel E; de Blick-Hogerworst J; Yli-Urpo AU; de Groot K
    J Biomed Mater Res; 1993 Oct; 27(10):1225-33. PubMed ID: 8245037
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of simulated body fluid on the mechanical properties of multiblock poly(aliphatic/aromatic-ester) copolymers.
    Renke-Gluszko M; El Fray M
    Biomaterials; 2004 Sep; 25(21):5191-8. PubMed ID: 15109843
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cartilage tissue engineering using PHBV and PHBV/Bioglass scaffolds.
    Zhou M; Yu D
    Mol Med Rep; 2014 Jul; 10(1):508-14. PubMed ID: 24737242
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preparation and characterization of bioactive calcium silicate and poly(epsilon-caprolactone) nanocomposite for bone tissue regeneration.
    Wei J; Heo SJ; Liu C; Kim DH; Kim SE; Hyun YT; Shin JW; Shin JW
    J Biomed Mater Res A; 2009 Sep; 90(3):702-12. PubMed ID: 18563819
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass--polycaprolactone composites.
    Prabhakar RL; Brocchini S; Knowles JC
    Biomaterials; 2005 May; 26(15):2209-18. PubMed ID: 15585222
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials.
    Allo BA; Rizkalla AS; Mequanint K
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic.
    Bhardwaj R; Mohanty AK; Drzal LT; Pourboghrat F; Misra M
    Biomacromolecules; 2006 Jun; 7(6):2044-51. PubMed ID: 16768432
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mesoporous bioactive glasses: mechanical reinforcement by means of a biomimetic process.
    Arcos D; Vila M; López-Noriega A; Rossignol F; Champion E; Oliveira FJ; Vallet-Regí M
    Acta Biomater; 2011 Jul; 7(7):2952-9. PubMed ID: 21316492
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative "autocatalytic" electroless coprecipitation route.
    Oliveira JM; Costa SA; Leonor IB; Malafaya PB; Mano JF; Reis RL
    J Biomed Mater Res A; 2009 Feb; 88(2):470-80. PubMed ID: 18306322
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface characterization of silver-doped bioactive glass.
    Vernè E; Di Nunzio S; Bosetti M; Appendino P; Brovarone CV; Maina G; Cannas M
    Biomaterials; 2005 Sep; 26(25):5111-9. PubMed ID: 15792537
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering.
    Paşcu EI; Stokes J; McGuinness GB
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4905-16. PubMed ID: 24094204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids solutions.
    Lusvardi G; Malavasi G; Menabue L; Aina V; Morterra C
    Acta Biomater; 2009 Nov; 5(9):3548-62. PubMed ID: 19523544
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications.
    Tuzlakoglu K; Alves CM; Mano JF; Reis RL
    Macromol Biosci; 2004 Aug; 4(8):811-9. PubMed ID: 15468275
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication and characterization of biodegradable poly(3-hydroxybutyrate) composite containing bioglass.
    Misra SK; Nazhat SN; Valappil SP; Moshrefi-Torbati M; Wood RJ; Roy I; Boccaccini AR
    Biomacromolecules; 2007 Jul; 8(7):2112-9. PubMed ID: 17530893
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydroxyapatite/SiO(2)-CaO-P(2)O(5) glass materials: in vitro bioactivity and biocompatibility.
    Padilla S; Román J; Sánchez-Salcedo S; Vallet-Regí M
    Acta Biomater; 2006 May; 2(3):331-42. PubMed ID: 16701892
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improving hydrophilicity, mechanical properties and biocompatibility of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide).
    Li X; Liu KL; Wang M; Wong SY; Tjiu WC; He CB; Goh SH; Li J
    Acta Biomater; 2009 Jul; 5(6):2002-12. PubMed ID: 19251499
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioactive surface modification on amide-photografted poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
    Ke Y; Wang YJ; Ren L; Wu G; Xue W
    Biomed Mater; 2011 Apr; 6(2):025007. PubMed ID: 21358029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.