These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16183730)

  • 1. Mechanism of osmotic flow in a periodic fiber array.
    Zhang X; Curry FR; Weinbaum S
    Am J Physiol Heart Circ Physiol; 2006 Feb; 290(2):H844-52. PubMed ID: 16183730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The endothelial glycocalyx: Barrier functions versus red cell hemodynamics: A model of steady state ultrafiltration through a bi-layer formed by a porous outer layer and more selective membrane-associated inner layer.
    Curry FE; Michel CC
    Biorheology; 2019; 56(2-3):113-130. PubMed ID: 30664499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mathematical model for filtration and macromolecule transport across capillary walls.
    Facchini L; Bellin A; Toro EF
    Microvasc Res; 2014 Jul; 94():52-63. PubMed ID: 24831726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmotic reflextion coefficients of capillary walls to low molecular weight hydrophilic solutes measured in single perfused capillaries of the frog mesentery.
    Curry FE; Michel CC; Mason JC
    J Physiol; 1976 Oct; 261(2):319-36. PubMed ID: 1086361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of osmotic flow in porous membranes.
    Anderson JL; Malone DM
    Biophys J; 1974 Dec; 14(12):957-82. PubMed ID: 4429773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in the understanding of endothelial barrier function and fluid therapy.
    Thind GS; Zanders S; Baker JK
    Postgrad Med J; 2018 May; 94(1111):289-295. PubMed ID: 29374091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-dimensional junction-pore-matrix model for capillary permeability.
    Weinbaum S; Tsay R; Curry FE
    Microvasc Res; 1992 Jul; 44(1):85-111. PubMed ID: 1640881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.
    Hammel HT; Schlegel WM
    Cell Biochem Biophys; 2005; 42(3):277-345. PubMed ID: 15976460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microvascular fluid exchange and the revised Starling principle.
    Levick JR; Michel CC
    Cardiovasc Res; 2010 Jul; 87(2):198-210. PubMed ID: 20200043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy.
    Woodcock TE; Woodcock TM
    Br J Anaesth; 2012 Mar; 108(3):384-94. PubMed ID: 22290457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolving ideas about osmosis and capillary fluid exchange.
    Hammel HT
    FASEB J; 1999 Feb; 13(2):213-31. PubMed ID: 9973310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge effects on the hindered transport of macromolecules across the endothelial surface glycocalyx layer.
    Sugihara-Seki M; Akinaga T; O-Tani H
    Biorheology; 2012; 49(5-6):301-16. PubMed ID: 23380897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microvascular ion transport through endothelial glycocalyx layer: new mechanism and improved Starling principle.
    Jiang XZ; Ventikos Y; Luo KH
    Am J Physiol Heart Circ Physiol; 2019 Jul; 317(1):H104-H113. PubMed ID: 31026187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpreting peritoneal membrane osmotic reflection coefficients using a distributed model of peritoneal transport.
    Leypoldt JK
    Adv Perit Dial; 1993; 9():3-7. PubMed ID: 8105949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient transcapillary exchange of water driven by osmotic forces in the heart.
    Kellen MR; Bassingthwaighte JB
    Am J Physiol Heart Circ Physiol; 2003 Sep; 285(3):H1317-31. PubMed ID: 12738617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poroelastic theory of transcapillary flow: effects of endothelial glycocalyx deterioration.
    Speziale S; Sivaloganathan S
    Microvasc Res; 2009 Dec; 78(3):432-41. PubMed ID: 19664642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Filtration coefficients and osmotic reflexion coefficients of the walls of single frog mesenteric capillaries.
    Michel CC
    J Physiol; 1980 Dec; 309():341-55. PubMed ID: 6973022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling Loss of Microvascular Wall Homeostasis during Glycocalyx Deterioration and Hypertension that Impacts Plasma Filtration and Solute Exchange.
    Facchini L; Bellin A; Toro EF
    Curr Neurovasc Res; 2016; 13(2):147-55. PubMed ID: 26903394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aquaporin-1 in the peritoneal membrane: Implications for water transport across capillaries and peritoneal dialysis.
    Devuyst O; Ni J
    Biochim Biophys Acta; 2006 Aug; 1758(8):1078-84. PubMed ID: 16581016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.