These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16183880)

  • 41. Modeling interactome: scale-free or geometric?
    Przulj N; Corneil DG; Jurisica I
    Bioinformatics; 2004 Dec; 20(18):3508-15. PubMed ID: 15284103
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new measure of the robustness of biochemical networks.
    Chen BS; Wang YC; Wu WS; Li WH
    Bioinformatics; 2005 Jun; 21(11):2698-705. PubMed ID: 15731208
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Linear time-varying models can reveal non-linear interactions of biomolecular regulatory networks using multiple time-series data.
    Kim J; Bates DG; Postlethwaite I; Heslop-Harrison P; Cho KH
    Bioinformatics; 2008 May; 24(10):1286-92. PubMed ID: 18367478
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The challenges of modeling mammalian biocomplexity.
    Nicholson JK; Holmes E; Lindon JC; Wilson ID
    Nat Biotechnol; 2004 Oct; 22(10):1268-74. PubMed ID: 15470467
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Complex networks and simple models in biology.
    de Silva E; Stumpf MP
    J R Soc Interface; 2005 Dec; 2(5):419-30. PubMed ID: 16849202
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method.
    Fujita A; Sato JR; Garay-Malpartida HM; Morettin PA; Sogayar MC; Ferreira CE
    Bioinformatics; 2007 Jul; 23(13):1623-30. PubMed ID: 17463021
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reduction and solution of the chemical master equation using time scale separation and finite state projection.
    Peles S; Munsky B; Khammash M
    J Chem Phys; 2006 Nov; 125(20):204104. PubMed ID: 17144687
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Serially regulated biological networks fully realise a constrained set of functions.
    Mugler A; Ziv E; Nemenman I; Wiggins CH
    IET Syst Biol; 2008 Sep; 2(5):313-22. PubMed ID: 19045826
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Association between pathways in regulatory networks.
    Kluger Y; Kluger H; Tuck D
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2036-40. PubMed ID: 17946929
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamics of gene regulatory networks with cell division cycle.
    Chen L; Wang R; Kobayashi TJ; Aihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011909. PubMed ID: 15324090
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In silico simulation of biological network dynamics.
    Salwinski L; Eisenberg D
    Nat Biotechnol; 2004 Aug; 22(8):1017-9. PubMed ID: 15235611
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Learning regulatory programs that accurately predict differential expression with MEDUSA.
    Kundaje A; Lianoglou S; Li X; Quigley D; Arias M; Wiggins CH; Zhang L; Leslie C
    Ann N Y Acad Sci; 2007 Dec; 1115():178-202. PubMed ID: 17934055
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The dynamics of genetic control in the cell: the good and bad of being late.
    Tiana G; Jensen MH
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120469. PubMed ID: 23960227
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synergistic control of oscillations in the NF-kappaB signalling pathway.
    Ihekwaba AE; Broomhead DS; Grimley R; Benson N; White MR; Kell DB
    Syst Biol (Stevenage); 2005 Sep; 152(3):153-60. PubMed ID: 16986278
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Estimating the stochastic bifurcation structure of cellular networks.
    Song C; Phenix H; Abedi V; Scott M; Ingalls BP; Kaern M; Perkins TJ
    PLoS Comput Biol; 2010 Mar; 6(3):e1000699. PubMed ID: 20221261
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Non-transcriptional pathway features reconstructed from secondary effects of RNA interference.
    Markowetz F; Bloch J; Spang R
    Bioinformatics; 2005 Nov; 21(21):4026-32. PubMed ID: 16159925
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Deterministic projection by growing cell structure networks for visualization of high-dimensionality datasets.
    Wong JW; Cartwright HM
    J Biomed Inform; 2005 Aug; 38(4):322-30. PubMed ID: 16084474
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contrasting methods for symbolic analysis of biological regulatory networks.
    Wilds R; Glass L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):062902. PubMed ID: 20365210
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural robustness of biochemical network models-with application to the oscillatory metabolism of activated neutrophils.
    Jacobsen EW; Cedersund G
    IET Syst Biol; 2008 Jan; 2(1):39-47. PubMed ID: 18248085
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Supervised inference of gene-regulatory networks.
    To CC; Vohradsky J
    BMC Bioinformatics; 2008 Jan; 9():2. PubMed ID: 18177495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.