These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 161839)

  • 21. 1-Amino-2-phenylethylphosphonic acid: an inhibitor of L-phenylalanine ammonia-lyase in vitro.
    Janas KM; Filipiak A; Kowalik J; Mastalerz P; Knypl JS
    Acta Biochim Pol; 1985; 32(2):131-43. PubMed ID: 4036447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An evaluation of phenylpropanoid metabolism during cold-induced sphagnorubin synthesis in Sphagnum magellanicum BRID.
    Tutschek R
    Planta; 1982 Aug; 155(4):301-6. PubMed ID: 24271863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosynthesis of phenylalanine, tyrosine, 3-(3-carbocyphenyl) alanine and 3-(3-carbocy-4-hydroxyphenyl) alanine in higher plants. Examples of the transformation possibilities for chorismic acid.
    Larsen PO; Onderka DK; Floss HG
    Biochim Biophys Acta; 1975 Feb; 381(2):397-408. PubMed ID: 1120151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The regulatory role of shikimate in plant phenylalanine metabolism.
    Adams ZP; Ehlting J; Edwards R
    J Theor Biol; 2019 Feb; 462():158-170. PubMed ID: 30412698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shikimate pathway modulates the elicitor-stimulated accumulation of fragrant 2-hydroxy-4-methoxybenzaldehyde in Hemidesmus indicus roots.
    Kundu A; Jawali N; Mitra A
    Plant Physiol Biochem; 2012 Jul; 56():104-8. PubMed ID: 22609460
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fungal and Plant Phenylalanine Ammonia-lyase.
    Hyun MW; Yun YH; Kim JY; Kim SH
    Mycobiology; 2011 Dec; 39(4):257-65. PubMed ID: 22783113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosynthesis of phytoquinones. Biosynthetic origins of the nuclei and satellite methyl groups of plastoquinone, tocopherols and tocopherolquinones in maize shoots, bean shoots and ivy leaves.
    Whistance GR; Threlfall DR
    Biochem J; 1968 Oct; 109(4):577-95. PubMed ID: 5683508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aminooxy-naphthylpropionic acid and its derivatives are inhibitors of auxin biosynthesis targeting l-tryptophan aminotransferase: structure-activity relationships.
    Narukawa-Nara M; Nakamura A; Kikuzato K; Kakei Y; Sato A; Mitani Y; Yamasaki-Kokudo Y; Ishii T; Hayashi K; Asami T; Ogura T; Yoshida S; Fujioka S; Kamakura T; Kawatsu T; Tachikawa M; Soeno K; Shimada Y
    Plant J; 2016 Aug; 87(3):245-57. PubMed ID: 27147230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosynthesis of p-aminophenylalanine: part of a general scheme for the biosynthesis of chorisimic acid derivatives.
    Dardenne GA; Larsen PO; Wieczorkowska E
    Biochim Biophys Acta; 1975 Feb; 381(2):416-23. PubMed ID: 1120153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of anthocyanin formation in seedlings and flowers by the enantiomers of α-aminooxy-β-phenylpropionic acid and their N-benzyloxycarbonyl derivatives.
    Amrhein N; Holländer H
    Planta; 1979 Jan; 144(4):385-9. PubMed ID: 24407328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosynthesis of pseudoisoeugenols in tissue cultures of Pimpinella anisum. Phenylalanine ammonia lyase and cinnamic acid 4-hydroxylase activities.
    Reichling J; Kemmerer B; Sauer-Gürth H
    Pharm World Sci; 1995 Jul; 17(4):113-9. PubMed ID: 7581216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The control of L-phenylalanine ammonia-lyase activity by phosphonate and aminooxy analogues of phenylalanine.
    Janas KM
    Acta Biochim Pol; 1993; 40(4):451-4. PubMed ID: 8140817
    [No Abstract]   [Full Text] [Related]  

  • 33. The entry reaction of the plant shikimate pathway is subjected to highly complex metabolite-mediated regulation.
    Yokoyama R; de Oliveira MVV; Kleven B; Maeda HA
    Plant Cell; 2021 May; 33(3):671-696. PubMed ID: 33955484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. m-Carboxy-substituted aromatic amino acids in plant metabolism. II. The incorporation of shikimic acid into L-3-(3-carboxy-4-hydroxyphenyl)alanine in Reseda lutea L.
    Larsen PO
    Biochim Biophys Acta; 1966 Feb; 115(2):529-31. PubMed ID: 5943458
    [No Abstract]   [Full Text] [Related]  

  • 35. Conversion of phenylalanine into tyrosine by portulaca callus.
    Endress R
    Plant Physiol; 1981 Aug; 68(2):272-4. PubMed ID: 16661900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The pattern of shikimate pathway and phenylpropanoids after inhibition by glyphosate or quinate feeding in pea roots.
    Zabalza A; Orcaray L; Fernández-Escalada M; Zulet-González A; Royuela M
    Pestic Biochem Physiol; 2017 Sep; 141():96-102. PubMed ID: 28911748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants.
    Tzin V; Galili G
    Mol Plant; 2010 Nov; 3(6):956-72. PubMed ID: 20817774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The formation of -cyclohexyl-fatty acids from shikimate in an acidophilic thermophilic bacillus. A new biosynthetic pathway.
    De Rosa M; Gambacorta A; Minale L; Bu'lock JD
    Biochem J; 1972 Jul; 128(4):751-4. PubMed ID: 4638790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The shikimate pathway and aromatic amino Acid biosynthesis in plants.
    Maeda H; Dudareva N
    Annu Rev Plant Biol; 2012; 63():73-105. PubMed ID: 22554242
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of tyrosine through phenylalanine hydroxylation bypasses the intrinsic feedback inhibition in Escherichia coli.
    Huang J; Lin Y; Yuan Q; Yan Y
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):655-9. PubMed ID: 25645094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.