These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 16185066)
1. Linker histone H1 per se can induce three-dimensional folding of chromatin fiber. Hizume K; Yoshimura SH; Takeyasu K Biochemistry; 2005 Oct; 44(39):12978-89. PubMed ID: 16185066 [TBL] [Abstract][Full Text] [Related]
2. Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array. Hizume K; Nakai T; Araki S; Prieto E; Yoshikawa K; Takeyasu K Ultramicroscopy; 2009 Jul; 109(8):868-73. PubMed ID: 19328628 [TBL] [Abstract][Full Text] [Related]
3. Chromatin dynamics of unfolding and refolding controlled by the nucleosome repeat length and the linker and core histones. Kobori T; Iwamoto S; Takeyasu K; Ohtani T Biopolymers; 2007 Mar; 85(4):295-307. PubMed ID: 17211885 [TBL] [Abstract][Full Text] [Related]
4. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. Carruthers LM; Bednar J; Woodcock CL; Hansen JC Biochemistry; 1998 Oct; 37(42):14776-87. PubMed ID: 9778352 [TBL] [Abstract][Full Text] [Related]
5. Major role of the histones H3-H4 in the folding of the chromatin fiber. Moore SC; Ausió J Biochem Biophys Res Commun; 1997 Jan; 230(1):136-9. PubMed ID: 9020030 [TBL] [Abstract][Full Text] [Related]
6. Visualization and analysis of chromatin by scanning force microscopy. Bustamante C; Zuccheri G; Leuba SH; Yang G; Samori B Methods; 1997 May; 12(1):73-83. PubMed ID: 9169197 [TBL] [Abstract][Full Text] [Related]
7. Atomic force microscopy demonstrates a critical role of DNA superhelicity in nucleosome dynamics. Hizume K; Yoshimura SH; Takeyasu K Cell Biochem Biophys; 2004; 40(3):249-61. PubMed ID: 15211026 [TBL] [Abstract][Full Text] [Related]
8. On the location of histones H1 and H5 in the chromatin fiber. Studies with immobilized trypsin and chymotrypsin. Leuba SH; Zlatanova J; van Holde K J Mol Biol; 1993 Feb; 229(4):917-29. PubMed ID: 8445656 [TBL] [Abstract][Full Text] [Related]
9. Chromatin compaction at the mononucleosome level. Tóth K; Brun N; Langowski J Biochemistry; 2006 Feb; 45(6):1591-8. PubMed ID: 16460006 [TBL] [Abstract][Full Text] [Related]
10. [Structure of the chromatin with long linker DNA]. Osipova TN; Karpova EV; Konditerov SV; Vorob'ev VI Mol Biol (Mosk); 1990; 24(1):69-78. PubMed ID: 2348828 [TBL] [Abstract][Full Text] [Related]
11. A method for the in vitro reconstitution of a defined "30 nm" chromatin fibre containing stoichiometric amounts of the linker histone. Huynh VA; Robinson PJ; Rhodes D J Mol Biol; 2005 Feb; 345(5):957-68. PubMed ID: 15644197 [TBL] [Abstract][Full Text] [Related]
12. Structural changes of soluble rat liver chromatin induced by the shift in pH from 7 to 9. Labhart P; Thoma F; Koller T Eur J Cell Biol; 1981 Aug; 25(1):19-27. PubMed ID: 7285953 [TBL] [Abstract][Full Text] [Related]
18. Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure. Daban JR Micron; 2011 Dec; 42(8):733-50. PubMed ID: 21703860 [TBL] [Abstract][Full Text] [Related]
19. Reconstitution of chromatin in vitro. Ura K; Kaneda Y Methods Mol Biol; 2001; 181():309-25. PubMed ID: 12843460 [TBL] [Abstract][Full Text] [Related]
20. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. Thoma F; Koller T; Klug A J Cell Biol; 1979 Nov; 83(2 Pt 1):403-27. PubMed ID: 387806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]