BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 16185648)

  • 1. Application of Fourier transform infrared spectroscopy for monitoring hydrolysis and synthesis reactions catalyzed by a recombinant amidase.
    Pacheco R; Karmali A; Serralheiro ML; Haris PI
    Anal Biochem; 2005 Nov; 346(1):49-58. PubMed ID: 16185648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic properties of wild-type and altered recombinant amidases by the use of ion-selective electrode assay method.
    Martins S; Karmali A; Serralheiro ML
    Anal Biochem; 2006 Aug; 355(2):232-9. PubMed ID: 16792995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring enzymatic activity of a recombinant amidase using Fourier transform infrared spectroscopy.
    Pacheco R; Serralheiro ML; Karmali A; Haris PI
    Anal Biochem; 2003 Nov; 322(2):208-14. PubMed ID: 14596829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of Fourier transform infrared spectroscopy to assay for urease from Pseudomonas aeruginosa and Canavalia ensiformis.
    Karmali K; Karmali A; Teixeira A; Curto MJ
    Anal Biochem; 2004 Aug; 331(1):115-21. PubMed ID: 15246003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas aeruginosa amidase: aggregation in recombinant Escherichia coli.
    Borges P; Pacheco R; Karmali A
    Biotechnol J; 2011 Jul; 6(7):888-97. PubMed ID: 21567956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel thermostable nitrilase superfamily amidase from Geobacillus pallidus showing acyl transfer activity.
    Makhongela HS; Glowacka AE; Agarkar VB; Sewell BT; Weber B; Cameron RA; Cowan DA; Burton SG
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):801-11. PubMed ID: 17347819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of hydrolysis of toxic organophosphates and organophosphonates by diisopropyl fluorophosphatase from Loligo vulgaris by in situ Fourier transform infrared spectroscopy.
    Gäb J; Melzer M; Kehe K; Richardt A; Blum MM
    Anal Biochem; 2009 Feb; 385(2):187-93. PubMed ID: 19084491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of penicillin amidase for E. coli. Kinetics of enzymatic hydrolysis of 7-phenylacetamidodeacetoxycephalosporanic acid].
    Shviadas VK; Klesov AA; Nys PS; Savitskaia EM; Berezin IV
    Antibiotiki; 1976 Aug; 21(8):698-704. PubMed ID: 793511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. R-stereoselective amidase from Rhodococcus erythropolis No. 7 acting on 4-chloro-3-hydroxybutyramide.
    Park HJ; Uhm KN; Kim HK
    J Microbiol Biotechnol; 2008 Mar; 18(3):552-9. PubMed ID: 18388476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic mechanism of the aliphatic amidase from Pseudomonas aeruginosa.
    Woods MJ; Findlater JD; Orsi BA
    Biochim Biophys Acta; 1979 Mar; 567(1):225-37. PubMed ID: 110350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic transesterification monitored by an easy-to-use Fourier transform infrared spectroscopy method.
    Natalello A; Sasso F; Secundo F
    Biotechnol J; 2013 Jan; 8(1):133-8. PubMed ID: 22791391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Enzymatic kinetics and mid-infrared spectroscopy combined with multidimensional data analysis].
    Cadet F; Pin FW; Robert C; Baret P
    C R Acad Sci III; 1994 Nov; 317(11):973-5. PubMed ID: 7882141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of Pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases.
    Nakagawa Y; Hasegawa A; Hiratake J; Sakata K
    Protein Eng Des Sel; 2007 Jul; 20(7):339-46. PubMed ID: 17616559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time monitoring of the oxalate decarboxylase reaction and probing hydron exchange in the product, formate, using fourier transform infrared spectroscopy.
    Muthusamy M; Burrell MR; Thorneley RN; Bornemann S
    Biochemistry; 2006 Sep; 45(35):10667-73. PubMed ID: 16939218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved FTIR difference spectroscopy as tool for investigating refolding reactions of ribonuclease T1 synchronized with trans --> cis prolyl isomerization.
    Moritz R; Reinstädler D; Fabian H; Naumann D
    Biopolymers; 2002; 67(3):145-55. PubMed ID: 11979593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Penicillin amidase from E. coli. A direct spectrophotometric method of determining the enzyme's activity].
    Nys PS; Kolygina TS; Garaev MM
    Antibiotiki; 1977 Mar; 22(3):211-6. PubMed ID: 15505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier transform infrared spectroscopy analysis of the conformational quality of recombinant proteins within inclusion bodies.
    Doglia SM; Ami D; Natalello A; Gatti-Lafranconi P; Lotti M
    Biotechnol J; 2008 Feb; 3(2):193-201. PubMed ID: 18213662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of infrared spectroscopy to monitor protein structure and stability.
    Manning MC
    Expert Rev Proteomics; 2005 Oct; 2(5):731-43. PubMed ID: 16209652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [An algorithm for real-time quantitative analysis of remote detection spectrum of chemical vapor with passive Fourier-transform infrared spectroscopy].
    Zhang J; Chen Z; Xun Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Jun; 19(3):310-3. PubMed ID: 15819042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid determination of spore chemistry using thermochemolysis gas chromatography-mass spectrometry and micro-Fourier transform infrared spectroscopy.
    Watson JS; Sephton MA; Sephton SV; Self S; Fraser WT; Lomax BH; Gilmour I; Wellman CH; Beerling DJ
    Photochem Photobiol Sci; 2007 Jun; 6(6):689-94. PubMed ID: 17549272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.