These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16185744)

  • 1. Electrochemical dechlorination of chloroacetic acids (CAAs) using hemoglobin-loaded carbon nanotube electrode.
    Li YP; Cao HB; Zhang Y
    Chemosphere; 2006 Apr; 63(2):359-64. PubMed ID: 16185744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reductive dehalogenation of haloacetic acids by hemoglobin-loaded carbon nanotube electrode.
    Li YP; Cao HB; Zhang Y
    Water Res; 2007 Jan; 41(1):197-205. PubMed ID: 17056091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Reductive dechlorination of trichloroacetic acid by bioelectrochemically catalytic method].
    Li YP; Cao HB; Zhang Y
    Huan Jing Ke Xue; 2005 Jul; 26(4):55-8. PubMed ID: 16212168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical reduction of nitrobenzene at carbon nanotube electrode.
    Li YP; Cao HB; Liu CM; Zhang Y
    J Hazard Mater; 2007 Sep; 148(1-2):158-63. PubMed ID: 17374445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity.
    Salimi A; Hallaj R; Soltanian S
    Biophys Chem; 2007 Nov; 130(3):122-31. PubMed ID: 17825977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dissolved oxygen concentration on iron efficiency: Removal of three chloroacetic acids.
    Tang S; Wang XM; Mao YQ; Zhao Y; Yang HW; Xie YF
    Water Res; 2015 Apr; 73():342-52. PubMed ID: 25697696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode.
    Sun W; Zhai Z; Wang D; Liu S; Jiao K
    Bioelectrochemistry; 2009 Feb; 74(2):295-300. PubMed ID: 19059815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation and distribution of haloacetic acids in copper pipe during chlorination.
    Li B; Liu R; Liu H; Gu J; Qu J
    J Hazard Mater; 2008 Mar; 152(1):250-8. PubMed ID: 17689009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated direct electrochemistry of hemoglobin based on hemoglobin-carbon nanotube (Hb-CNT) assembly.
    Zhang R; Wang X; Shiu KK
    J Colloid Interface Sci; 2007 Dec; 316(2):517-22. PubMed ID: 17904150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate of THMs and HAAs in low TOC surface water.
    Kim J
    Environ Res; 2009 Feb; 109(2):158-65. PubMed ID: 19135189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical reductive removal of trichloroacetic acids by a three-dimensional binderless carbon nanotubes/ CoP/Co foam electrode: Performance and mechanism.
    He L; Yao F; Zhong Y; Tan C; Chen S; Pi Z; Li X; Yang Q
    J Hazard Mater; 2024 May; 470():134120. PubMed ID: 38537573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dechlorination of Trichloroacetic Acid Using a Noble Metal-Free Graphene-Cu Foam Electrode via Direct Cathodic Reduction and Atomic H.
    Mao R; Li N; Lan H; Zhao X; Liu H; Qu J; Sun M
    Environ Sci Technol; 2016 Apr; 50(7):3829-37. PubMed ID: 26977556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photo-electrochemical degradation of some chlorinated organic compounds on n-TiO2 electrode.
    Ohsaka T; Shinozaki K; Tsuruta K; Hirano K
    Chemosphere; 2008 Nov; 73(8):1279-83. PubMed ID: 18718634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical degradation of trichloroacetic acid in aqueous media: influence of the electrode material.
    Esclapez MD; Díez-García MI; Sàez V; Bonete P; González-García J
    Environ Technol; 2013; 34(1-4):383-93. PubMed ID: 23530352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemistry and electrocatalysis of hemoglobin in Nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode.
    Sun W; Gao R; Jiao K
    J Phys Chem B; 2007 May; 111(17):4560-7. PubMed ID: 17425353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct electrochemistry and bioelectrocatalysis of hemoglobin immobilized on carbon black.
    Ma GX; Lu TH; Xia YY
    Bioelectrochemistry; 2007 Nov; 71(2):180-5. PubMed ID: 17499558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct electrochemistry of hemoglobin in dimethyldioctadecyl ammonium bromide film and its electrocatalysis to nitric oxide.
    Liu X; Shang L; Sun Z; Li G
    J Biochem Biophys Methods; 2005 Feb; 62(2):143-51. PubMed ID: 15680284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of zinc on the transformation of haloacetic acids (HAAs) in drinking water.
    Wang W; Zhu L
    J Hazard Mater; 2010 Feb; 174(1-3):40-6. PubMed ID: 19781851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled films of hemoglobin/laponite/chitosan: application for the direct electrochemistry and catalysis to hydrogen peroxide.
    Shan D; Han E; Xue H; Cosnier S
    Biomacromolecules; 2007 Oct; 8(10):3041-6. PubMed ID: 17824641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductive dechlorination of tetrachloroethene in a sand reactor using a potentiostat.
    Shimomura T; Sanford RA
    J Environ Qual; 2005; 34(4):1435-8. PubMed ID: 15998866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.