BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16186364)

  • 1. The influence of intraocular pressure on the transscleral diffusion of high-molecular-weight compounds.
    Cruysberg LP; Nuijts RM; Geroski DH; Gilbert JA; Hendrikse F; Edelhauser HF
    Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3790-4. PubMed ID: 16186364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion of high molecular weight compounds through sclera.
    Ambati J; Canakis CS; Miller JW; Gragoudas ES; Edwards A; Weissgold DJ; Kim I; Delori FC; Adamis AP
    Invest Ophthalmol Vis Sci; 2000 Apr; 41(5):1181-5. PubMed ID: 10752958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion of macromolecules through sclera.
    Miao H; Wu BD; Tao Y; Li XX
    Acta Ophthalmol; 2013 Feb; 91(1):e1-6. PubMed ID: 22998133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of molecular shape, conformability, net surface charge, and tissue interaction on transscleral macromolecular diffusion.
    Srikantha N; Mourad F; Suhling K; Elsaid N; Levitt J; Chung PH; Somavarapu S; Jackson TL
    Exp Eye Res; 2012 Sep; 102():85-92. PubMed ID: 22846670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity.
    Pitkänen L; Ranta VP; Moilanen H; Urtti A
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):641-6. PubMed ID: 15671294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of intraocular pressure on human and rabbit scleral permeability.
    Rudnick DE; Noonan JS; Geroski DH; Prausnitz MR; Edelhauser HF
    Invest Ophthalmol Vis Sci; 1999 Nov; 40(12):3054-8. PubMed ID: 10549673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of human sclera barrier properties for transscleral delivery of bevacizumab and ranibizumab.
    Wen H; Hao J; Li SK
    J Pharm Sci; 2013 Mar; 102(3):892-903. PubMed ID: 23212655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scleral hydraulic conductivity and macromolecular diffusion in patients with uveal effusion syndrome.
    Jackson TL; Hussain A; Morley AM; Sullivan PM; Hodgetts A; El-Osta A; Hillenkamp J; Charles SJ; Sheard R; Williamson TH; Kumar A; Laidlaw DA; Woon WH; Costen MJ; Luff AJ; Marshall J
    Invest Ophthalmol Vis Sci; 2008 Nov; 49(11):5033-40. PubMed ID: 18552396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo ocular fluorophotometry: delivery of fluoresceinated dextrans via transscleral diffusion in rabbits.
    Berezovsky DE; Patel SR; McCarey BE; Edelhauser HF
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7038-45. PubMed ID: 21791594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human scleral permeability. Effects of age, cryotherapy, transscleral diode laser, and surgical thinning.
    Olsen TW; Edelhauser HF; Lim JI; Geroski DH
    Invest Ophthalmol Vis Sci; 1995 Aug; 36(9):1893-903. PubMed ID: 7543465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of benzalkonium chloride on transscleral drug delivery.
    Okabe K; Kimura H; Okabe J; Kato A; Shimizu H; Ueda T; Shimada S; Ogura Y
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):703-8. PubMed ID: 15671302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transscleral permeability of fluorescent-labeled antibiotics.
    Kao JC; Geroski DH; Edelhauser HF
    J Ocul Pharmacol Ther; 2005 Feb; 21(1):1-10. PubMed ID: 15718823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human scleral hydraulic conductivity: age-related changes, topographical variation, and potential scleral outflow facility.
    Jackson TL; Hussain A; Hodgetts A; Morley AM; Hillenkamp J; Sullivan PM; Marshall J
    Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):4942-6. PubMed ID: 17065511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human transscleral albumin permeability and the effect of topographical location and donor age.
    Anderson OA; Jackson TL; Singh JK; Hussain AA; Marshall J
    Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):4041-5. PubMed ID: 18450593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scleral permeability of a small, single-stranded oligonucleotide.
    Shuler RK; Dioguardi PK; Henjy C; Nickerson JM; Cruysberg LP; Edelhauser HF
    J Ocul Pharmacol Ther; 2004 Apr; 20(2):159-68. PubMed ID: 15117572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small Intestinal Permeability and Gut-Transit Time Determined with Low and High Molecular Weight Fluorescein Isothiocyanate-Dextrans in C3H Mice.
    Woting A; Blaut M
    Nutrients; 2018 May; 10(6):. PubMed ID: 29843428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dextran retention in the rat brain following release from a polymer implant.
    Dang W; Saltzman WM
    Biotechnol Prog; 1992; 8(6):527-32. PubMed ID: 1282018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scleral permeability varies by mouse strain and is decreased by chronic experimental glaucoma.
    Pease ME; Oglesby EN; Cone-Kimball E; Jefferys JL; Steinhart MR; Kim AJ; Hanes J; Quigley HA
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2564-73. PubMed ID: 24557355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraocular distribution of 70-kDa dextran after subconjunctival injection in mice.
    Kim TW; Lindsey JD; Aihara M; Anthony TL; Weinreb RN
    Invest Ophthalmol Vis Sci; 2002 Jun; 43(6):1809-16. PubMed ID: 12036983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased human scleral permeability with prostaglandin exposure.
    Kim JW; Lindsey JD; Wang N; Weinreb RN
    Invest Ophthalmol Vis Sci; 2001 Jun; 42(7):1514-21. PubMed ID: 11381055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.