These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16186895)

  • 1. Elucidating excited state electronic structure and intercomponent interactions in multicomponent and supramolecular systems.
    Browne WR; O'Boyle NM; McGarvey JJ; Vos JG
    Chem Soc Rev; 2005 Aug; 34(8):641-63. PubMed ID: 16186895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using light to induce energy and electron transfer or molecular motions in multicomponent systems.
    Ballardini R; Credi A; Gandolfi MT; Marchioni F; Silvi S; Venturi M
    Photochem Photobiol Sci; 2007 Apr; 6(4):345-56. PubMed ID: 17404627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the low-energy electronic excited states of benzoyl-substituted ruthenocenes.
    Sanderson CT; Quinlan JA; Conover RC; Johnson MK; Murphy M; Dluhy RA; Kutal C
    Inorg Chem; 2005 May; 44(9):3283-9. PubMed ID: 15847438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed-valent metals bridged by a radical ligand: fact or fiction based on structure-oxidation state correlations.
    Sarkar B; Patra S; Fiedler J; Sunoj RB; Janardanan D; Lahiri GK; Kaim W
    J Am Chem Soc; 2008 Mar; 130(11):3532-42. PubMed ID: 18290644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Verdazyl radicals as redox-active, non-innocent, ligands: contrasting electronic structures as a function of electron-poor and electron-rich ruthenium bis(beta-diketonate) co-ligands.
    McKinnon SD; Patrick BO; Lever AB; Hicks RG
    Chem Commun (Camb); 2010 Feb; 46(5):773-5. PubMed ID: 20087516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction intermediates of quinol oxidation in a photoactivatable system that mimics electron transfer in the cytochrome bc1 complex.
    Cape JL; Bowman MK; Kramer DM
    J Am Chem Soc; 2005 Mar; 127(12):4208-15. PubMed ID: 15783202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond absorption spectroscopy of transition metal charge-transfer complexes.
    McCusker JK
    Acc Chem Res; 2003 Dec; 36(12):876-87. PubMed ID: 14674779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling electron transfer through the manipulation of structure and ligand-based torsional motions: a computational exploration of ruthenium donor-acceptor systems using density functional theory.
    Meylemans HA; Damrauer NH
    Inorg Chem; 2009 Dec; 48(23):11161-75. PubMed ID: 19856899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge transfer dynamics between photoexcited CdS nanorods and mononuclear Ru water-oxidation catalysts.
    Tseng HW; Wilker MB; Damrauer NH; Dukovic G
    J Am Chem Soc; 2013 Mar; 135(9):3383-6. PubMed ID: 23406271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conjugation length dependent ground and excited state electronic behavior in oligothienyl ru complexes.
    Moorlag C; Sarkar B; Sanrame CN; Bäuerle P; Kaim W; Wolf MO
    Inorg Chem; 2006 Sep; 45(18):7044-6. PubMed ID: 16933899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Widely differing photochemical behavior in related octahedral {Ru-NO}6 compounds: intramolecular redox isomerism of the excited state controlling the photodelivery of NO.
    De Candia AG; Marcolongo JP; Etchenique R; Slep LD
    Inorg Chem; 2010 Aug; 49(15):6925-30. PubMed ID: 20578716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast optical excitations in supramolecular metallacycles with charge transfer properties.
    Flynn DC; Ramakrishna G; Yang HB; Northrop BH; Stang PJ; Goodson T
    J Am Chem Soc; 2010 Feb; 132(4):1348-58. PubMed ID: 20055383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dyad as photocatalyst for light-driven sulfide oxygenation with water as the unique oxygen atom source.
    Hamelin O; Guillo P; Loiseau F; Boissonnet MF; Ménage S
    Inorg Chem; 2011 Sep; 50(17):7952-4. PubMed ID: 21793512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pushing around electrons: towards 2-D and 3-D molecular switches.
    Benniston AC
    Chem Soc Rev; 2004 Nov; 33(9):573-8. PubMed ID: 15592622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photophysical properties of ligand localized excited state in ruthenium(II) polypyridyl complexes: a combined effect of electron donor-acceptor ligand.
    Verma S; Kar P; Das A; Ghosh HN
    Dalton Trans; 2011 Oct; 40(38):9765-73. PubMed ID: 21869976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical oxidation state analysis of Ru-(bpy)3: influence of water solvation and Hubbard correction in first-principles calculations.
    Reeves KG; Kanai Y
    J Chem Phys; 2014 Jul; 141(2):024305. PubMed ID: 25028017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energies for biological electron transfer from QM/MM calculation: method, application and critical assessment.
    Blumberger J
    Phys Chem Chem Phys; 2008 Oct; 10(37):5651-67. PubMed ID: 18956100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices.
    Holten D; Bocian DF; Lindsey JS
    Acc Chem Res; 2002 Jan; 35(1):57-69. PubMed ID: 11790089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple thermodynamics for unravelling sophisticated self-assembly processes.
    Hamacek J; Borkovec M; Piguet C
    Dalton Trans; 2006 Mar; (12):1473-90. PubMed ID: 16538265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switchable antenna: a star-shaped ruthenium/osmium tetranuclear complex with azobis(bipyridine) bridging ligands.
    Otsuki J; Imai A; Sato K; Li DM; Hosoda M; Owa M; Akasaka T; Yoshikawa I; Araki K; Suenobu T; Fukuzumi S
    Chemistry; 2008; 14(9):2709-18. PubMed ID: 18205158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.