BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 16186914)

  • 1. On two alternative mechanisms of ethane activation over ZSM-5 zeolite modified by Zn2+ and Ga1+ cations.
    Kazansky VB; Subbotina IR; Rane N; van Santen RA; Hensen EJ
    Phys Chem Chem Phys; 2005 Aug; 7(16):3088-92. PubMed ID: 16186914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (1)H and (13)C MAS NMR studies of light alkanes activation over MFI zeolite modified by Zn vapour.
    Kolyagin YG; Ivanova II; Pirogov YA
    Solid State Nucl Magn Reson; 2009 Apr; 35(2):104-12. PubMed ID: 19286356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ high temperature MAS NMR study of the mechanisms of catalysis. Ethane aromatization on Zn-modified zeolite BEA.
    Arzumanov SS; Gabrienko AA; Freude D; Stepanov AG
    Solid State Nucl Magn Reson; 2009 Apr; 35(2):113-9. PubMed ID: 19186034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual infrared spectrum of ethane adsorbed by gallium oxide.
    Kazansky VB; Subbotina IR; Pronin AA; Schlögl R; Jentoft FC
    J Phys Chem B; 2006 Apr; 110(15):7975-8. PubMed ID: 16610896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intensities of C-H IR stretching bands of ethane and propane adsorbed by zeolites as a new spectral criterion of their chemical activation via polarization resulting from stretching of chemical bonds.
    Kazansky VB; Subbotina IR; Jentoft FC; Schlögl R
    J Phys Chem B; 2006 Sep; 110(35):17468-77. PubMed ID: 16942086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intensities of IR stretching bands as a criterion of polarization and initial chemical activation of adsorbed molecules in acid catalysis. Ethane adsorption and dehydrogenation by zinc ions in ZnZSM-5 zeolite.
    Kazansky VB; Pidko EA
    J Phys Chem B; 2005 Feb; 109(6):2103-8. PubMed ID: 16851201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the nature of gallium species in gallium-modified mordenite and MFI zeolites. A comparative DRIFT study of carbon monoxide adsorption and hydrogen dissociation.
    Serykh AI; Kolesnikov SP
    Phys Chem Chem Phys; 2011 Apr; 13(15):6892-900. PubMed ID: 21390401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H/D exchange of molecular hydrogen with Brønsted acid sites of Zn- and Ga-modified zeolite BEA.
    Gabrienko AA; Arzumanov SS; Toktarev AV; Danilova IG; Freude D; Stepanov AG
    Phys Chem Chem Phys; 2010 May; 12(19):5149-55. PubMed ID: 20445917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational and variable-temperature infrared spectroscopic studies on carbon monoxide adsorption on zeolite Ca-A.
    Pulido A; Nachtigall P; Rodríguez Delgado M; Otero Areán C
    Chemphyschem; 2009 May; 10(7):1058-65. PubMed ID: 19288483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EPR spectroscopy of Cu(I)-NO adsorption complexes formed over Cu-ZSM-5 and Cu-MCM-22 zeolites.
    Umamaheswari V; Hartmann M; Pöppl A
    J Phys Chem B; 2005 Feb; 109(4):1537-46. PubMed ID: 16851125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid phase calorimetry and adsorption analyses of zeolite beta acidity.
    Lemos de Macedo J; Ferreira Ghesti G; Alves Dias J; Cláudia Loureiro Dias S
    Phys Chem Chem Phys; 2008 Mar; 10(11):1584-92. PubMed ID: 18327315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption processes and XRD analysis of a natural zeolite exchanged with Pb(2+), Cd(2+) and Zn(2+) cations.
    Castaldi P; Santona L; Enzo S; Melis P
    J Hazard Mater; 2008 Aug; 156(1-3):428-34. PubMed ID: 18242839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalysis of transesterification by a nonfunctionalized metal-organic framework: acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations.
    Chizallet C; Lazare S; Bazer-Bachi D; Bonnier F; Lecocq V; Soyer E; Quoineaud AA; Bats N
    J Am Chem Soc; 2010 Sep; 132(35):12365-77. PubMed ID: 20715825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FTIR spectroscopic and computational studies on hydrogen adsorption on the zeolite Li-FER.
    Nachtigall P; Garrone E; Palomino GT; Delgado MR; Nachtigallová D; Areán CO
    Phys Chem Chem Phys; 2006 May; 8(19):2286-92. PubMed ID: 16688311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multinuclear gallium-oxide cations in high-silica zeolites.
    Pidko EA; van Santen RA; Hensen EJ
    Phys Chem Chem Phys; 2009 Apr; 11(16):2893-902. PubMed ID: 19421504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DFT modeling of CO2 adsorption on Cu, Zn, Ni, Pd/DOH zeolite.
    Smykowski D; Szyja B; Szczygieł J
    J Mol Graph Model; 2013 Apr; 41():89-96. PubMed ID: 23511930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ NMR studies of isobutane activation and exchange in zeolite beta.
    Truitt MJ; White JL
    Solid State Nucl Magn Reson; 2009 Apr; 35(2):100-3. PubMed ID: 19185469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular simulation of adsorption of alkanes in sodium MOR-type zeolites using a new force field.
    Liu B; Smit B
    Phys Chem Chem Phys; 2006 Apr; 8(15):1852-7. PubMed ID: 16633672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active sites in working bifunctional GaH-TON aromatization catalysts: kinetic evaluation.
    Lukyanov DB; Vazhnova T
    J Phys Chem B; 2006 Sep; 110(37):18473-80. PubMed ID: 16970474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the adsorption state and desorption kinetics of NO(2) over Fe-zeolite catalyst by FT-IR and temperature-programmed desorption.
    Iwasaki M; Shinjoh H
    Phys Chem Chem Phys; 2010 Mar; 12(10):2365-72. PubMed ID: 20449349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.