These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
52 related articles for article (PubMed ID: 16187402)
1. FrankSum: new feature selection method for protein function prediction. Al-Shahib A; Breitling R; Gilbert D Int J Neural Syst; 2005 Aug; 15(4):259-75. PubMed ID: 16187402 [TBL] [Abstract][Full Text] [Related]
2. Feature selection and the class imbalance problem in predicting protein function from sequence. Al-Shahib A; Breitling R; Gilbert D Appl Bioinformatics; 2005; 4(3):195-203. PubMed ID: 16231961 [TBL] [Abstract][Full Text] [Related]
3. A novel feature selection approach for biomedical data classification. Peng Y; Wu Z; Jiang J J Biomed Inform; 2010 Feb; 43(1):15-23. PubMed ID: 19647098 [TBL] [Abstract][Full Text] [Related]
4. Ranking Gene Ontology terms for predicting non-classical secretory proteins in eukaryotes and prokaryotes. Huang WL J Theor Biol; 2012 Nov; 312():105-13. PubMed ID: 22967952 [TBL] [Abstract][Full Text] [Related]
5. Prediction of protein-protein interactions based on PseAA composition and hybrid feature selection. Liu L; Cai Y; Lu W; Feng K; Peng C; Niu B Biochem Biophys Res Commun; 2009 Mar; 380(2):318-22. PubMed ID: 19171120 [TBL] [Abstract][Full Text] [Related]
6. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers. Barenboim M; Masso M; Vaisman II; Jamison DC Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470 [TBL] [Abstract][Full Text] [Related]
7. Using feature generation and feature selection for accurate prediction of translation initiation sites. Zeng F; Yap RH; Wong L Genome Inform; 2002; 13():192-200. PubMed ID: 14571388 [TBL] [Abstract][Full Text] [Related]
8. Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Cho BH; Yu H; Kim KW; Kim TH; Kim IY; Kim SI Artif Intell Med; 2008 Jan; 42(1):37-53. PubMed ID: 17997291 [TBL] [Abstract][Full Text] [Related]
9. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition. Hayat M; Khan A J Theor Biol; 2011 Feb; 271(1):10-7. PubMed ID: 21110985 [TBL] [Abstract][Full Text] [Related]
10. Prediction of tyrosine sulfation with mRMR feature selection and analysis. Niu S; Huang T; Feng K; Cai Y; Li Y J Proteome Res; 2010 Dec; 9(12):6490-7. PubMed ID: 20973568 [TBL] [Abstract][Full Text] [Related]
11. Feature selection for MLP neural network: the use of random permutation of probabilistic outputs. Yang JB; Shen KQ; Ong CJ; Li XP IEEE Trans Neural Netw; 2009 Dec; 20(12):1911-22. PubMed ID: 19822474 [TBL] [Abstract][Full Text] [Related]
12. Feature selection using a neural framework with controlled redundancy. Chakraborty R; Pal NR IEEE Trans Neural Netw Learn Syst; 2015 Jan; 26(1):35-50. PubMed ID: 25532154 [TBL] [Abstract][Full Text] [Related]
13. Predicting genes involved in human cancer using network contextual information. Rahmani H; Blockeel H; Bender A J Integr Bioinform; 2012 Sep; 9(1):210. PubMed ID: 22948007 [TBL] [Abstract][Full Text] [Related]
14. Signal peptide discrimination and cleavage site identification using SVM and NN. Kazemian HB; Yusuf SA; White K Comput Biol Med; 2014 Feb; 45():98-110. PubMed ID: 24480169 [TBL] [Abstract][Full Text] [Related]
15. An efficient statistical feature selection approach for classification of gene expression data. Chandra B; Gupta M J Biomed Inform; 2011 Aug; 44(4):529-35. PubMed ID: 21241823 [TBL] [Abstract][Full Text] [Related]
16. Accurate prediction of solvent accessibility using neural networks-based regression. Adamczak R; Porollo A; Meller J Proteins; 2004 Sep; 56(4):753-67. PubMed ID: 15281128 [TBL] [Abstract][Full Text] [Related]
17. The cross-species prediction of bacterial promoters using a support vector machine. Towsey M; Timms P; Hogan J; Mathews SA Comput Biol Chem; 2008 Oct; 32(5):359-66. PubMed ID: 18703385 [TBL] [Abstract][Full Text] [Related]
18. Prediction of protein subcellular localization. Yu CS; Chen YC; Lu CH; Hwang JK Proteins; 2006 Aug; 64(3):643-51. PubMed ID: 16752418 [TBL] [Abstract][Full Text] [Related]
19. Improvement of protein binding sites prediction by selecting amino acid residues' features. Mirceva G; Kulakov A J Struct Biol; 2015 Jan; 189(1):9-19. PubMed ID: 25478969 [TBL] [Abstract][Full Text] [Related]
20. Prediction of bacterial protein subcellular localization by incorporating various features into Chou's PseAAC and a backward feature selection approach. Li L; Yu S; Xiao W; Li Y; Li M; Huang L; Zheng X; Zhou S; Yang H Biochimie; 2014 Sep; 104():100-7. PubMed ID: 24929100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]