BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

733 related articles for article (PubMed ID: 16187442)

  • 1. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.
    Stams AJ; Plugge CM; de Bok FA; van Houten BH; Lens P; Dijkman H; Weijma J
    Water Sci Technol; 2005; 52(1-2):13-20. PubMed ID: 16187442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition for H2 between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor.
    Weijma J; Gubbels F; Hulshoff Pol LW; Stams AJ; Lens P; Lettinga G
    Water Sci Technol; 2002; 45(10):75-80. PubMed ID: 12188580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of sulfate and nitrate on methane formation in a freshwater sediment.
    Scholten JC; Stams AJ
    Antonie Van Leeuwenhoek; 1995 Nov; 68(4):309-15. PubMed ID: 8821786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids.
    Omil F; Lens P; Visser A; Hulshoff Pol LW; Lettinga G
    Biotechnol Bioeng; 1998 Mar; 57(6):676-85. PubMed ID: 10099247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of sulfate on methanogenic communities that degrade unsaturated and saturated long-chain fatty acids (LCFA).
    Sousa DZ; Alves JI; Alves MM; Smidt H; Stams AJ
    Environ Microbiol; 2009 Jan; 11(1):68-80. PubMed ID: 18783383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peat: home to novel syntrophic species that feed acetate- and hydrogen-scavenging methanogens.
    Schmidt O; Hink L; Horn MA; Drake HL
    ISME J; 2016 Aug; 10(8):1954-66. PubMed ID: 26771931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic interactions between anaerobic bacteria in methanogenic environments.
    Stams AJ
    Antonie Van Leeuwenhoek; 1994; 66(1-3):271-94. PubMed ID: 7747937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir.
    Chen C; Shen Y; An D; Voordouw G
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of copper to acetoclastic and hydrogenotrophic activities of methanogens and sulfate reducers in anaerobic sludge.
    Karri S; Sierra-Alvarez R; Field JA
    Chemosphere; 2006 Jan; 62(1):121-7. PubMed ID: 15936054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.
    Orcutt B; Samarkin V; Boetius A; Joye S
    Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syntrophic-archaeal associations in a nutrient-impacted freshwater marsh.
    Chauhan A; Reddy KR; Ogram AV
    J Appl Microbiol; 2006; 100(1):73-84. PubMed ID: 16405687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of formate and hydrogen in the degradation of propionate and butyrate by defined suspended cocultures of acetogenic and methanogenic bacteria.
    Stams AJ; Dong X
    Antonie Van Leeuwenhoek; 1995 Nov; 68(4):281-4. PubMed ID: 8821782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductive decolourisation of azo dyes by mesophilic and thermophilic methanogenic consortia.
    Cervantes FJ; dos Santos AB; de Madrid MP; Stams AJ; van Lier JB
    Water Sci Technol; 2005; 52(1-2):351-6. PubMed ID: 16180449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetite Alters the Metabolic Interaction between Methanogens and Sulfate-Reducing Bacteria.
    Giangeri G; Tsapekos P; Gaspari M; Ghofrani-Isfahani P; Hong Lin MKT; Treu L; Kougias P; Campanaro S; Angelidaki I
    Environ Sci Technol; 2023 Oct; 57(43):16399-16413. PubMed ID: 37862709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and activities of sulfate-reducing and methanogenic bacteria in human oral cavity.
    Robichaux M; Howell M; Boopathy R
    Curr Microbiol; 2003 Jul; 47(1):12-6. PubMed ID: 12783186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii.
    Liu Y; Balkwill DL; Aldrich HC; Drake GR; Boone DR
    Int J Syst Bacteriol; 1999 Apr; 49 Pt 2():545-56. PubMed ID: 10319475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field-scale isotopic labeling of phospholipid fatty acids from acetate-degrading sulfate-reducing bacteria.
    Pombo SA; Kleikemper J; Schroth MH; Zeyer J
    FEMS Microbiol Ecol; 2005 Jan; 51(2):197-207. PubMed ID: 16329868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the competition between sulphate reducers and methanogens in a thermophilic methanol-fed bioreactor.
    Spanjer H; Weijma J; Abusam A
    Water Sci Technol; 2002; 45(10):93-8. PubMed ID: 12188584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Methanobrevibacter acididurans in anaerobic digestion.
    Savant DV; Ranade DR
    Water Sci Technol; 2004; 50(6):109-14. PubMed ID: 15536997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities.
    Worm P; Koehorst JJ; Visser M; Sedano-Núñez VT; Schaap PJ; Plugge CM; Sousa DZ; Stams AJM
    Biochim Biophys Acta; 2014 Dec; 1837(12):2004-2016. PubMed ID: 24973598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.