These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16187789)

  • 1. A model of chromosome aberration induction: applications to space research.
    Ballarini F; Ottolenghi A
    Radiat Res; 2005 Oct; 164(4 Pt 2):567-70. PubMed ID: 16187789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of chromosome aberration induction and chronic myeloid leukaemia incidence at low doses.
    Ballarini F; Ottolenghi A
    Radiat Environ Biophys; 2004 Sep; 43(3):165-71. PubMed ID: 15309385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models of chromosome aberration induction: an example based on radiation track structure.
    Ballarini F; Ottolenghi A
    Cytogenet Genome Res; 2004; 104(1-4):149-56. PubMed ID: 15162029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosome aberrations induced by light ions: Monte Carlo simulations based on a mechanistic model.
    Ballarini F; Merzagora M; Monforti F; Durante M; Gialanella G; Grossi GF; Pugliese M; Ottolenghi A
    Int J Radiat Biol; 1999 Jan; 75(1):35-46. PubMed ID: 9972789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome aberrations as biomarkers of radiation exposure: modelling basic mechanisms.
    Ballarini F; Ottolenghi A
    Adv Space Res; 2003; 31(6):1557-68. PubMed ID: 12971411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosome aberration dosimetry in cosmonauts after single or multiple space flights.
    Durante M; Snigiryova G; Akaeva E; Bogomazova A; Druzhinin S; Fedorenko B; Greco O; Novitskaya N; Rubanovich A; Shevchenko V; Von Recklinghausen U; Obe G
    Cytogenet Genome Res; 2003; 103(1-2):40-6. PubMed ID: 15004462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome aberrations in the blood lymphocytes of astronauts after space flight.
    George K; Durante M; Wu H; Willingham V; Badhwar G; Cucinotta FA
    Radiat Res; 2001 Dec; 156(6):731-8. PubMed ID: 11741497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of chromosome aberrations in the blood lymphocytes of astronauts measured after space flight by FISH chromosome painting.
    George K; Willingham V; Cucinotta FA
    Radiat Res; 2005 Oct; 164(4 Pt 2):474-80. PubMed ID: 16187752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proximity effects for chromosome aberrations measured by FISH.
    Chen AM; Lucas JN; Hill FS; Brenner DJ; Sachs RK
    Int J Radiat Biol; 1996 Apr; 69(4):411-20. PubMed ID: 8627123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosome aberrations produced by ionizing radiation: Monte Carlo simulations and chromosome painting data.
    Chen AM; Lucas JN; Hill FS; Brenner DJ; Sachs RK
    Comput Appl Biosci; 1995 Aug; 11(4):389-97. PubMed ID: 8521048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear architecture and radiation induced chromosome aberrations: models and simulations.
    Ballarini F; Biaggi M; Ottolenghi A
    Radiat Prot Dosimetry; 2002; 99(1-4):175-82. PubMed ID: 12194278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of dose rate on the induction of simple and complex chromosome exchanges by gamma rays.
    Loucas BD; Eberle R; Bailey SM; Cornforth MN
    Radiat Res; 2004 Oct; 162(4):339-49. PubMed ID: 15447049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RITCARD: Radiation-Induced Tracks, Chromosome Aberrations, Repair and Damage.
    Plante I; Ponomarev A; Patel Z; Slaba T; Hada M
    Radiat Res; 2019 Sep; 192(3):282-298. PubMed ID: 31295089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation of data on chromosome aberrations produced by X rays or alpha particles and detected by fluorescence in situ hybridization.
    Chen AM; Lucas JN; Simpson PJ; Griffin CS; Savage JR; Brenner DJ; Hlatky LR; Sachs RK
    Radiat Res; 1997 Nov; 148(5 Suppl):S93-101. PubMed ID: 9355862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for interphase chromosomes and evaluation of radiation-induced aberrations.
    Holley WR; Mian IS; Park SJ; Rydberg B; Chatterjee A
    Radiat Res; 2002 Nov; 158(5):568-80. PubMed ID: 12385634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytogenetic damage in the blood lymphocytes of astronauts: effects of repeat long-duration space missions.
    George K; Rhone J; Beitman A; Cucinotta FA
    Mutat Res; 2013 Aug; 756(1-2):165-9. PubMed ID: 23639573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of Chromosome Aberrations in Human Fibroblasts Irradiated by Mixed Fields Generated with Shielding.
    Slaba TC; Plante I; Ponomarev A; Patel ZS; Hada M
    Radiat Res; 2020 Sep; 194(3):246-258. PubMed ID: 32942302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological dosimetry for astronauts: a real challenge.
    Testard I; Sabatier L
    Mutat Res; 1999 Dec; 430(2):315-26. PubMed ID: 10631347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo and in vitro measurements of complex-type chromosomal exchanges induced by heavy ions.
    George K; Durante M; Wu H; Willingham V; Cucinotta FA
    Adv Space Res; 2003; 31(6):1525-35. PubMed ID: 12971407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proximity effects in chromosome aberration induction: Dependence on radiation quality, cell type and dose.
    Tello Cajiao JJ; Carante MP; Bernal Rodriguez MA; Ballarini F
    DNA Repair (Amst); 2018 Apr; 64():45-52. PubMed ID: 29494834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.