These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 16187794)

  • 1. Dynamic properties of network motifs contribute to biological network organization.
    Prill RJ; Iglesias PA; Levchenko A
    PLoS Biol; 2005 Nov; 3(11):e343. PubMed ID: 16187794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Networking genetic regulation and neural computation: directed network topology and its effect on the dynamics.
    Grönlund A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061908. PubMed ID: 15697403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein interaction networks of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster: large-scale organization and robustness.
    Li D; Li J; Ouyang S; Wang J; Wu S; Wan P; Zhu Y; Xu X; He F
    Proteomics; 2006 Jan; 6(2):456-61. PubMed ID: 16317777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ordered cyclic motifs contribute to dynamic stability in biological and engineered networks.
    Ma'ayan A; Cecchi GA; Wagner J; Rao AR; Iyengar R; Stolovitzky G
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19235-40. PubMed ID: 19033453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin and implications of zero degeneracy in networks spectra.
    Yadav A; Jalan S
    Chaos; 2015 Apr; 25(4):043110. PubMed ID: 25933658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bridge and brick network motifs: identifying significant building blocks from complex biological systems.
    Huang CY; Cheng CY; Sun CT
    Artif Intell Med; 2007 Oct; 41(2):117-27. PubMed ID: 17825540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superfamilies of evolved and designed networks.
    Milo R; Itzkovitz S; Kashtan N; Levitt R; Shen-Orr S; Ayzenshtat I; Sheffer M; Alon U
    Science; 2004 Mar; 303(5663):1538-42. PubMed ID: 15001784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network motifs: simple building blocks of complex networks.
    Milo R; Shen-Orr S; Itzkovitz S; Kashtan N; Chklovskii D; Alon U
    Science; 2002 Oct; 298(5594):824-7. PubMed ID: 12399590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs.
    Kashtan N; Itzkovitz S; Milo R; Alon U
    Bioinformatics; 2004 Jul; 20(11):1746-58. PubMed ID: 15001476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comment on "Network motifs: simple building blocks of complex networks" and "Superfamilies of evolved and designed networks".
    Artzy-Randrup Y; Fleishman SJ; Ben-Tal N; Stone L
    Science; 2004 Aug; 305(5687):1107; author reply 1107. PubMed ID: 15326338
    [No Abstract]   [Full Text] [Related]  

  • 11. Organization of excitable dynamics in hierarchical biological networks.
    Müller-Linow M; Hilgetag CC; Hütt MT
    PLoS Comput Biol; 2008 Sep; 4(9):e1000190. PubMed ID: 18818769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mining bridge and brick motifs from complex biological networks for functionally and statistically significant discovery.
    Cheng CY; Huang CY; Sun CT
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):17-24. PubMed ID: 18270079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of the transcriptional regulatory networks of E. coli and yeast: structural characteristics leading to marginal dynamic stability.
    Lee DS; Rieger H
    J Theor Biol; 2007 Oct; 248(4):618-26. PubMed ID: 17692874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic and structural constraints in signal propagation by regulatory networks.
    Estrada J; Guantes R
    Mol Biosyst; 2013 Feb; 9(2):268-84. PubMed ID: 23224050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of metabolic networks: structure versus function.
    Mahadevan R; Palsson BO
    Biophys J; 2005 Jan; 88(1):L07-9. PubMed ID: 15574705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide system analysis reveals stable yet flexible network dynamics in yeast.
    Gustafsson M; Hörnquist M; Björkegren J; Tegnér J
    IET Syst Biol; 2009 Jul; 3(4):219-28. PubMed ID: 19640161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-correcting networks: function, robustness, and motif distributions in biological signal processing.
    Kaluza P; Vingron M; Mikhailov AS
    Chaos; 2008 Jun; 18(2):026113. PubMed ID: 18601515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SimBioNeT: a simulator of biological network topology.
    Di Camillo B; Falda M; Toffolo G; Cobelli C
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):592-600. PubMed ID: 21860065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural comparison of metabolic networks in selected single cell organisms.
    Zhu D; Qin ZS
    BMC Bioinformatics; 2005 Jan; 6():8. PubMed ID: 15649332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.