BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16188219)

  • 21. Closed-tube SNP genotyping without labeled probes/a comparison between unlabeled probe and amplicon melting.
    Liew M; Seipp M; Durtschi J; Margraf RL; Dames S; Erali M; Voelkerding K; Wittwer C
    Am J Clin Pathol; 2007 Mar; 127(3):341-8. PubMed ID: 17276934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parallel optimization and genotyping of multiple single-nucleotide polymorphism markers by sample pooling approach using cycling-gradient CE with multiple injections.
    Minarik M; Benesova L; Fantova L; Horacek J; Heracek J; Loukola A
    Electrophoresis; 2006 Oct; 27(19):3856-63. PubMed ID: 16972303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single nucleotide polymorphism detection in the hMSH2 gene using conformation-sensitive CE.
    Chen YL; Jong YJ; Ferrance J; Hsien JS; Shih CJ; Feng CH; Wu MT; Wu SM
    Electrophoresis; 2008 Feb; 29(3):634-40. PubMed ID: 18186537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Separation of homo- and heteroduplexes of DNA fragments with different melting temperature by capillary electrophoresis at one single temperature.
    Du M; Flanagan JH; Ma Y
    J Capill Electrophor Microchip Technol; 2007; 10(1-2):33-9. PubMed ID: 17685240
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vascular endothelial growth factor (VEGF) polymorphisms in HELLP syndrome patients determined by quantitative real-time PCR and melting curve analyses.
    Nagy B; Savli H; Molvarec A; Várkonyi T; Rigó B; Hupuczi P; Rigó J
    Clin Chim Acta; 2008 Mar; 389(1-2):126-31. PubMed ID: 18167313
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of single nucleotide polymorphisms by PCR conformation-difference gel electrophoresis.
    Zhu W; Deng Y; Jie K; Luo D; Liu Z; Yu L; Zeng E; Wan F
    Biotechnol Lett; 2013 Apr; 35(4):515-22. PubMed ID: 23250445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-resolution genotyping by amplicon melting analysis using LCGreen.
    Wittwer CT; Reed GH; Gundry CN; Vandersteen JG; Pryor RJ
    Clin Chem; 2003 Jun; 49(6 Pt 1):853-60. PubMed ID: 12765979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A single nucleotide polymorphism melt curve assay employing an intercalating dye probe fluorescence resonance energy transfer for forensic analysis.
    Halpern MD; Ballantyne J
    Anal Biochem; 2009 Aug; 391(1):1-10. PubMed ID: 19433053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-resolution DNA melting analysis: advancements and limitations.
    Wittwer CT
    Hum Mutat; 2009 Jun; 30(6):857-9. PubMed ID: 19479960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SNP genotyping by heteroduplex analysis.
    Paniego N; Fusari C; Lia V; Puebla A
    Methods Mol Biol; 2015; 1245():141-50. PubMed ID: 25373754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of C:C mismatch base pair by fluorescence spectral change upon addition of silver (I) cation: toward the efficient analyses of single nucleotide polymorphism.
    Torigoe H; Kozasa T; Ono A
    Nucleic Acids Symp Ser (Oxf); 2006; (50):89-90. PubMed ID: 17150831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influencing factors of dsDNA dye (high-resolution) melting curves and improved genotype call based on thermodynamic considerations.
    Schütz E; von Ahsen N
    Anal Biochem; 2009 Feb; 385(1):143-52. PubMed ID: 19027705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons.
    Liew M; Pryor R; Palais R; Meadows C; Erali M; Lyon E; Wittwer C
    Clin Chem; 2004 Jul; 50(7):1156-64. PubMed ID: 15229148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid melting curve analysis on monolayered beads for high-throughput genotyping of single-nucleotide polymorphisms.
    Russom A; Haasl S; Brookes AJ; Andersson H; Stemme G
    Anal Chem; 2006 Apr; 78(7):2220-5. PubMed ID: 16579600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of the C282Y and H63D polymorphisms associated with hereditary hemochromatosis using the ABI 7500 fast real time PCR platform.
    Tafe LJ; Belloni DR; Tsongalis GJ
    Diagn Mol Pathol; 2007 Jun; 16(2):112-5. PubMed ID: 17525682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimized PCR fragments for heteroduplex analysis of the whole human mitochondrial genome with denaturing HPLC.
    Wulfert M; Tapprich C; Gattermann N
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Feb; 831(1-2):236-47. PubMed ID: 16406745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient SNP analysis enabled by joint application of the muTGGE and heteroduplex methods.
    Salimullah M; Hamano K; Tachibana M; Inoue K; Nishigaki K
    Cell Mol Biol Lett; 2005; 10(2):237-45. PubMed ID: 16010289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SNP genotyping by unlabeled probe melting analysis.
    Erali M; Palais R; Wittwer C
    Methods Mol Biol; 2008; 429():199-206. PubMed ID: 18695968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heteroduplex mobility assay and single-stranded conformation polymorphism analysis as methodologies for detecting variants of human erythroviruses.
    de Mendonça MC; de Amorim Ferreira AM; dos Santos MG; de Barros JJ; von Hubinger MG; dos Santos Silva Couceiro JN
    J Virol Methods; 2008 Mar; 148(1-2):40-7. PubMed ID: 18054089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surveyor nuclease-based genotyping of SNPs.
    Mitani N; Tanaka S; Okamoto Y
    Clin Lab; 2006; 52(7-8):385-6. PubMed ID: 16955637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.