BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16188289)

  • 1. Greenhouse gas production: a comparison between aerobic and anaerobic wastewater treatment technology.
    Cakir FY; Stenstrom MK
    Water Res; 2005 Oct; 39(17):4197-203. PubMed ID: 16188289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greenhouse gas production in wastewater treatment: process selection is the major factor.
    Keller J; Hartley K
    Water Sci Technol; 2003; 47(12):43-8. PubMed ID: 12926668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Greenhouse gas emission reduction and environmental quality improvement from implementation of aerobic waste treatment systems in swine farms.
    Vanotti MB; Szogi AA; Vives CA
    Waste Manag; 2008; 28(4):759-66. PubMed ID: 18060761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A; Galatola M
    Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic digestion: impact of future greenhouse gases mitigation policies on methane generation and usage.
    Greenfield PF; Batstone DJ
    Water Sci Technol; 2005; 52(1-2):39-47. PubMed ID: 16180407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.
    Shen DS; He R; Liu XW; Long Y
    J Hazard Mater; 2006 Aug; 136(3):645-53. PubMed ID: 16513261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of landfilling and composting on greenhouse gas emissions--a review.
    Lou XF; Nair J
    Bioresour Technol; 2009 Aug; 100(16):3792-8. PubMed ID: 19155172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic digestion as a sustainable solution for biosolids management by the Montreal metropolitan community.
    Frigon JC; Guiot SR
    Water Sci Technol; 2005; 52(1-2):561-6. PubMed ID: 16180478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eliminating non-renewable CO2 emissions from sewage treatment: an anaerobic migrating bed reactor pilot plant study.
    Hartley K; Lant P
    Biotechnol Bioeng; 2006 Oct; 95(3):384-98. PubMed ID: 16817239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimization of greenhouse gas emission by application of anaerobic digestion process with biogas utilization.
    Yasui H; Komatsu K; Goel R; Matsuhashi R; Ohashi A; Harada H
    Water Sci Technol; 2005; 52(1-2):545-52. PubMed ID: 16180476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor.
    Romano RT; Zhang R
    Bioresour Technol; 2008 Feb; 99(3):631-7. PubMed ID: 17544267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon balance of anaerobic granulation process: carbon credit.
    Wong BT; Show KY; Lee DJ; Lai JY
    Bioresour Technol; 2009 Mar; 100(5):1734-9. PubMed ID: 18990565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic treatment of municipal wastewater using the UASB-technology.
    Urban I; Weichgrebe D; Rosenwinkel KH
    Water Sci Technol; 2007; 56(10):37-44. PubMed ID: 18048975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of greenhouse gases from anaerobic piggery wastewater treatment by bromochloromethane in Taiwan.
    Su JJ; Liu BY; Chang YC
    J Environ Sci Health B; 2004; 39(5-6):889-902. PubMed ID: 15620094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy- and CO2-reduction potentials by anaerobic treatment of wastewater and organic kitchen wastes in consideration of different climatic conditions.
    Weichgrebe D; Urban I; Friedrich K
    Water Sci Technol; 2008; 58(2):379-84. PubMed ID: 18701789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of GHG emission at the microbial community level.
    Insam H; Wett B
    Waste Manag; 2008; 28(4):699-706. PubMed ID: 18053703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimisation of biogas production from anaerobic digestion of agro-industrial waste streams in Brazil.
    Boncz MA; Bezerra LP; Ide CN; Paulo PL
    Water Sci Technol; 2008; 58(8):1659-64. PubMed ID: 19001722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective desorption of carbon dioxide from sewage sludge for in situ methane enrichment--part I: pilot-plant experiments.
    Lindberg A; Rasmuson AC
    Biotechnol Bioeng; 2006 Dec; 95(5):794-803. PubMed ID: 16933333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges and innovations on biological treatment of livestock effluents.
    Bernet N; BĂ©line F
    Bioresour Technol; 2009 Nov; 100(22):5431-6. PubMed ID: 19269810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fundamental processes and implications during in situ aeration of old landfills.
    Ritzkowski M; Heyer KU; Stegmann R
    Waste Manag; 2006; 26(4):356-72. PubMed ID: 16442789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.