BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1618830)

  • 1. Resonance Raman spectra of horseradish peroxidase and bovine liver catalase compound I species. Evidence for predominant 2A2u pi-cation radical ground state configurations.
    Chuang WJ; Van Wart HE
    J Biol Chem; 1992 Jul; 267(19):13293-301. PubMed ID: 1618830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman spectra of bovine liver catalase compound II. Similarity of the heme environment to horseradish peroxidase compound II.
    Chuang WJ; Heldt J; Van Wart HE
    J Biol Chem; 1989 Aug; 264(24):14209-15. PubMed ID: 2547789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for heme pi cation radical species in compound I of horseradish peroxidase and catalase.
    Browlett WR; Stillman MJ
    Biochim Biophys Acta; 1981 Jul; 660(1):1-7. PubMed ID: 7272312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of model compound I complexes of horseradish peroxidase and catalase.
    Du P; Loew GH
    Biophys J; 1995 Jan; 68(1):69-80. PubMed ID: 7711270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman spectra of bovine liver catalase: enhancement of proximal tyrosinate vibrations.
    Chuang WJ; Johnson S; Van Wart HE
    J Inorg Biochem; 1988 Nov; 34(3):201-19. PubMed ID: 3236004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the optical absorption and magnetic-circular-dichroism spectra of peanut peroxidase: electronic structure of a peroxidase with biochemical properties similar to those of horseradish peroxidase.
    Rodríguez Marañón MJ; Mercier D; van Huystee RB; Stillman MJ
    Biochem J; 1994 Jul; 301 ( Pt 2)(Pt 2):335-41. PubMed ID: 8042974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman spectroscopy of horseradish peroxidase derivatives and intermediates with excitation in the near ultraviolet.
    Palaniappan V; Terner J
    J Biol Chem; 1989 Sep; 264(27):16046-53. PubMed ID: 2777776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman spectroscopy of oxoiron(IV) porphyrin pi-cation radical and oxoiron(IV) hemes in peroxidase intermediates.
    Terner J; Palaniappan V; Gold A; Weiss R; Fitzgerald MM; Sullivan AM; Hosten CM
    J Inorg Biochem; 2006 Apr; 100(4):480-501. PubMed ID: 16513173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination modes of tyrosinate-ligated catalase-type heme enzymes: magnetic circular dichroism studies of Plexaura homomalla allene oxide synthase, Mycobacterium avium ssp. paratuberculosis protein-2744c, and bovine liver catalase in their ferric and ferrous states.
    Bandara DM; Sono M; Bruce GS; Brash AR; Dawson JH
    J Inorg Biochem; 2011 Dec; 105(12):1786-94. PubMed ID: 22104301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic circular dichroism studies on the electronic configuration of catalase compounds I and II.
    Browett WR; Stillman MJ
    Biochim Biophys Acta; 1980 May; 623(1):21-31. PubMed ID: 7378471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EPR investigation of compound I in Proteus mirabilis and bovine liver catalases: formation of porphyrin and tyrosyl radical intermediates.
    Ivancich A; Jouve HM; Sartor B; Gaillard J
    Biochemistry; 1997 Aug; 36(31):9356-64. PubMed ID: 9235978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman spectroscopy of the catalytic intermediates and derivatives of chloroperoxidase from Caldariomyces fumago.
    Hosten CM; Sullivan AM; Palaniappan V; Fitzgerald MM; Terner J
    J Biol Chem; 1994 May; 269(19):13966-78. PubMed ID: 8188677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The energy level scheme for the ferryl heme in compound II of the peroxidase-catalase family as determined from analysis of low-temperature magnetic circular dichroism.
    Sharonov YA
    Biochim Biophys Acta; 2001 Apr; 1504(2-3):444-51. PubMed ID: 11245808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substituted hemins as probes for structure-function relationships in horseradish peroxidase.
    DiNello RK; Dolphin DH
    J Biol Chem; 1981 Jul; 256(13):6903-12. PubMed ID: 7240251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and transient state kinetic studies on the formation and decomposition of horseradish peroxidase compounds XI and XII.
    Suh YJ; Hager LP
    J Biol Chem; 1991 Nov; 266(33):22102-9. PubMed ID: 1939231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-nuclear double resonance of horseradish peroxidase compound I. Detection of the porphyrin pi-cation radical.
    Roberts JE; Hoffman BM; Rutter R; Hager LP
    J Biol Chem; 1981 Mar; 256(5):2118-21. PubMed ID: 6257699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved and static resonance Raman spectroscopy of horseradish peroxidase intermediates.
    Oertling WA; Babcock GT
    Biochemistry; 1988 May; 27(9):3331-8. PubMed ID: 3390434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Raman spectra of native and mesoheme-reconstituted horseradish peroxidase and their catalytic intermediates.
    Kincaid JR; Zheng Y; Al-Mustafa J; Czarnecki K
    J Biol Chem; 1996 Nov; 271(46):28805-11. PubMed ID: 8910524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative spectral analysis of mammalian, fungal, and bacterial catalases. Resonance Raman evidence for iron-tyrosinate coordination.
    Sharma KD; Andersson LA; Loehr TM; Terner J; Goff HM
    J Biol Chem; 1989 Aug; 264(22):12772-9. PubMed ID: 2753885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a thiolate axial ligand on the pi-->pi* electronic states of oxoferryl porphyrins: a study of the optical and resonance Raman spectra of compounds I and II of chloroperoxidase.
    Egawa T; Proshlyakov DA; Miki H; Makino R; Ogura T; Kitagawa T; Ishimura Y
    J Biol Inorg Chem; 2001 Jan; 6(1):46-54. PubMed ID: 11191222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.