BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 16188310)

  • 1. Phosphagen kinase of the giant tubeworm Riftia pachyptila. Cloning and expression of cytoplasmic and mitochondrial isoforms of taurocyamine kinase.
    Uda K; Tanaka K; Bailly X; Zal F; Suzuki T
    Int J Biol Macromol; 2005 Oct; 37(1-2):54-60. PubMed ID: 16188310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin and properties of cytoplasmic and mitochondrial isoforms of taurocyamine kinase.
    Uda K; Saishoji N; Ichinari S; Ellington WR; Suzuki T
    FEBS J; 2005 Jul; 272(14):3521-30. PubMed ID: 16008553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases.
    Tanaka K; Suzuki T
    FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of the diverse array of phosphagen systems present in annelids.
    Suzuki T; Uda K; Adachi M; Sanada H; Tanaka K; Mizuta C; Ishida K; Ellington WR
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Jan; 152(1):60-6. PubMed ID: 18852060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and expression of a lombricine kinase from an echiuroid worm: insights into structural correlates of substrate specificity.
    Ellington WR; Bush J
    Biochem Biophys Res Commun; 2002 Mar; 291(4):939-44. PubMed ID: 11866456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates.
    Suzuki T; Furukohri T
    J Mol Biol; 1994 Apr; 237(3):353-7. PubMed ID: 8145248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypotaurocyamine kinase evolved from a gene for arginine kinase.
    Uda K; Iwai A; Suzuki T
    FEBS Lett; 2005 Dec; 579(30):6756-62. PubMed ID: 16325813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cDNA identification, comparison and phylogenetic aspects of lombricine kinase from two oligochaete species.
    Doumen C
    Comp Biochem Physiol B Biochem Mol Biol; 2010 Jun; 156(2):137-43. PubMed ID: 20230902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphagen kinase in Schistosoma japonicum: II. Determination of amino acid residues essential for substrate catalysis using site-directed mutagenesis.
    Tokuhiro S; Nagataki M; Jarilla BR; Uda K; Suzuki T; Sugiura T; Agatsuma T
    Mol Biochem Parasitol; 2014; 194(1-2):56-63. PubMed ID: 24815317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a putative oomycete taurocyamine kinase: Implications for the evolution of the phosphagen kinase family.
    Palmer A; Begres BN; Van Houten JM; Snider MJ; Fraga D
    Comp Biochem Physiol B Biochem Mol Biol; 2013; 166(3-4):173-81. PubMed ID: 23978736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of amino acid residues responsible for taurocyamine binding in mitochondrial taurocyamine kinase from Arenicola brasiliensis.
    Tanaka K; Matsumoto T; Suzuki T
    Biochim Biophys Acta; 2011 Oct; 1814(10):1219-25. PubMed ID: 21684357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Y84 on domain 1 and Y87 on domain 2 of Paragonimus westermani taurocyamine kinase: Insights on the substrate binding mechanism of a trematode phosphagen kinase.
    Jarilla BR; Tokuhiro S; Nagataki M; Uda K; Suzuki T; Acosta LP; Agatsuma T
    Exp Parasitol; 2013 Dec; 135(4):695-700. PubMed ID: 24184078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene structure of the two-domain taurocyamine kinase from Paragonimus westermani: evidence for a distinct lineage of trematode phosphagen kinases.
    Jarilla BR; Tokuhiro S; Nagataki M; Uda K; Suzuki T; Acosta LP; Agatsuma T
    FEBS Lett; 2013 Jul; 587(14):2278-83. PubMed ID: 23751729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation, characterization, and cDNA-derived amino acid sequence of glycocyamine kinase from the tropical marine worm Namalycastis sp.
    Mizuta C; Tanaka K; Suzuki T
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Mar; 140(3):387-93. PubMed ID: 15694586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase.
    Suzuki T; Kamidochi M; Inoue N; Kawamichi H; Yazawa Y; Furukohri T; Ellington WR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):671-5. PubMed ID: 10359650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphagen kinase in Schistosoma japonicum: characterization of its enzymatic properties and determination of its gene structure.
    Tokuhiro S; Uda K; Yano H; Nagataki M; Jarilla BR; Suzuki T; Agatsuma T
    Mol Biochem Parasitol; 2013 Apr; 188(2):91-8. PubMed ID: 23603791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable intron/exon structure in the oligochaete lombricine kinase gene.
    Doumen C
    Gene; 2012 Sep; 505(2):276-82. PubMed ID: 22705027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization and kinetic properties of a novel two-domain taurocyamine kinase from the lung fluke Paragonimus westermani.
    Jarilla BR; Tokuhiro S; Nagataki M; Hong SJ; Uda K; Suzuki T; Agatsuma T
    FEBS Lett; 2009 Jul; 583(13):2218-24. PubMed ID: 19500582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification, sequencing, and localization of a new carbonic anhydrase transcript from the hydrothermal vent tubeworm Riftia pachyptila.
    Sanchez S; Andersen AC; Hourdez S; Lallier FH
    FEBS J; 2007 Oct; 274(20):5311-24. PubMed ID: 17892492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.