These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 16188570)
1. Effect of pressure drop on solute retention and column efficiency in supercritical fluid chromatography. Rajendran A; Kräuchi O; Mazzotti M; Morbidelli M J Chromatogr A; 2005 Oct; 1092(1):149-60. PubMed ID: 16188570 [TBL] [Abstract][Full Text] [Related]
2. Effect of pressure drop on solute retention and column efficiency in supercritical fluid chromatography. Part 2: Modified carbon dioxide as mobile phase. Rajendran A; Gilkison TS; Mazzotti M J Sep Sci; 2008 May; 31(8):1279-89. PubMed ID: 18389520 [TBL] [Abstract][Full Text] [Related]
3. Effects of pressure drop, particle size and thermal conditions on retention and efficiency in supercritical fluid chromatography. Poe DP; Schroden JJ J Chromatogr A; 2009 Nov; 1216(45):7915-26. PubMed ID: 19767007 [TBL] [Abstract][Full Text] [Related]
4. Numerical modeling of elution peak profiles in supercritical fluid chromatography. Part I--elution of an unretained tracer. Kaczmarski K; Poe DP; Guiochon G J Chromatogr A; 2010 Oct; 1217(42):6578-87. PubMed ID: 20813372 [TBL] [Abstract][Full Text] [Related]
5. Effect of methanol concentration on the speed-resolution properties in adiabatic supercritical fluid chromatography. Gritti F; Guiochon G J Chromatogr A; 2013 Nov; 1314():255-65. PubMed ID: 24055225 [TBL] [Abstract][Full Text] [Related]
6. Effect of system variables involved in packed column supercritical fluid chromatography of stavudine taken as model analyte using response surface methodology along with study of thermodynamic parameters. Kaul N; Agrawal H; Paradkar AR; Mahadik KR J Pharm Biomed Anal; 2007 Jan; 43(2):471-80. PubMed ID: 16935453 [TBL] [Abstract][Full Text] [Related]
7. Efficiency of supercritical fluid chromatography columns in different thermal environments. Kaczmarski K; Poe DP; Tarafder A; Guiochon G J Chromatogr A; 2013 May; 1291():155-73. PubMed ID: 23598158 [TBL] [Abstract][Full Text] [Related]
8. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles. Poe DP; Veit D; Ranger M; Kaczmarski K; Tarafder A; Guiochon G J Chromatogr A; 2012 Aug; 1250():105-14. PubMed ID: 22521956 [TBL] [Abstract][Full Text] [Related]
9. Effect of system variables involved in packed column SFC of nevirapine as model analyte using response surface methodology: application to retention thermodynamics, solute transfer kinetic study and binary diffusion coefficient determination. Kaul N; Agrawal H; Paradkar AR; Mahadik KR J Biochem Biophys Methods; 2005 Aug; 64(2):121-41. PubMed ID: 16109442 [TBL] [Abstract][Full Text] [Related]
10. Effect of the thermal environment on the efficiency of packed columns in supercritical fluid chromatography. Zauner J; Lusk R; Koski S; Poe DP J Chromatogr A; 2012 Nov; 1266():149-57. PubMed ID: 23107122 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the axial heterogeneity of the retention factor of carbamazepine along an supercritical fluid chromatography column. I - Linear conditions. Kamarei F; Gritti F; Guiochon G J Chromatogr A; 2013 Sep; 1306():89-96. PubMed ID: 23910601 [TBL] [Abstract][Full Text] [Related]
12. Modeling of supercritical fluid extraction of phenanthrene from clayey soil. Elektorowicz M; El-Sadi H; Ayadat T J Sep Sci; 2008 May; 31(8):1381-6. PubMed ID: 18366027 [TBL] [Abstract][Full Text] [Related]
13. Pressure, temperature and density drops along supercritical fluid chromatography columns. II. Theoretical simulation for neat carbon dioxide and columns packed with 3-μm particles. Kaczmarski K; Poe DP; Tarafder A; Guiochon G J Chromatogr A; 2012 Aug; 1250():115-23. PubMed ID: 22687711 [TBL] [Abstract][Full Text] [Related]
14. Numerical modeling of the elution peak profiles of retained solutes in supercritical fluid chromatography. Kaczmarski K; Poe DP; Guiochon G J Chromatogr A; 2011 Sep; 1218(37):6531-9. PubMed ID: 21821256 [TBL] [Abstract][Full Text] [Related]
15. Use of the isopycnic plots in designing operations of supercritical fluid chromatography: IV. Pressure and density drops along columns. Tarafder A; Kaczmarski K; Ranger M; Poe DP; Guiochon G J Chromatogr A; 2012 May; 1238():132-45. PubMed ID: 22503621 [TBL] [Abstract][Full Text] [Related]
16. Chiral separation of selected proline derivatives using a polysaccharide-type stationary phase by supercritical fluid chromatography and comparison with high-performance liquid chromatography. Zhao Y; Pritts WA; Zhang S J Chromatogr A; 2008 May; 1189(1-2):245-53. PubMed ID: 18054949 [TBL] [Abstract][Full Text] [Related]
17. Occurrence of turbulent flow conditions in supercritical fluid chromatography. De Pauw R; Choikhet K; Desmet G; Broeckhoven K J Chromatogr A; 2014 Sep; 1361():277-85. PubMed ID: 25145564 [TBL] [Abstract][Full Text] [Related]
18. Method to predict the bandwidth of elution profile under the linear gradient elution in reversed-phase HPLC. Lee JW; Row KH J Sep Sci; 2009 Jan; 32(2):221-30. PubMed ID: 19156644 [TBL] [Abstract][Full Text] [Related]
19. Possibilities and limitations of the kinetic plot method in supercritical fluid chromatography. De Pauw R; Desmet G; Broeckhoven K J Chromatogr A; 2013 Aug; 1305():300-9. PubMed ID: 23890550 [TBL] [Abstract][Full Text] [Related]
20. Supercritical fluid chromatography and high-performance liquid chromatography/tandem mass spectrometric methods for the determination of cytarabine in mouse plasma. Hsieh Y; Li F; Duncan CJ Anal Chem; 2007 May; 79(10):3856-61. PubMed ID: 17441687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]