BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16188723)

  • 1. Modeling of drug release from bioerodible polymer matrices.
    He J; Zhong C; Mi J
    Drug Deliv; 2005; 12(5):251-9. PubMed ID: 16188723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colchicine encapsulation within poly(ethylene glycol)-coated poly(lactic acid)/poly(epsilon-caprolactone) microspheres-controlled release studies.
    Das GS; Rao GH; Wilson RF; Chandy T
    Drug Deliv; 2000; 7(3):129-38. PubMed ID: 10989913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable polymers for ocular drug delivery.
    Kimura H; Ogura Y
    Ophthalmologica; 2001; 215(3):143-55. PubMed ID: 11340382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modeling of drug release from bioerodible microparticles: effect of gamma-irradiation.
    Faisant N; Siepmann J; Richard J; Benoit JP
    Eur J Pharm Biopharm; 2003 Sep; 56(2):271-9. PubMed ID: 12957642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Mechanistic Model for Acidic Drug Release Using Microspheres Made of PLGA 50:50.
    Sevim K; Pan J
    Mol Pharm; 2016 Aug; 13(8):2729-35. PubMed ID: 27398973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of particle size, polydispersity and polymer degradation on progesterone release from PLGA microparticles: Experimental and mathematical modeling.
    Busatto C; Pesoa J; Helbling I; Luna J; Estenoz D
    Int J Pharm; 2018 Jan; 536(1):360-369. PubMed ID: 29217474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intra-thoracic fibrous tissue induction by polylactic acid and epsilon-caprolactone copolymer cubes, with or without slow release of basic fibroblast growth factor.
    Misaki N; Yamamoto Y; Okamoto T; Chang SS; Igai H; Gotoh M; Tabata Y; Yokomise H
    Eur J Cardiothorac Surg; 2007 Nov; 32(5):761-5. PubMed ID: 17766134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable polymers in controlled drug delivery.
    Heller J
    Crit Rev Ther Drug Carrier Syst; 1984; 1(1):39-90. PubMed ID: 6400195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modeling of bioerodible, polymeric drug delivery systems.
    Siepmann J; Göpferich A
    Adv Drug Deliv Rev; 2001 Jun; 48(2-3):229-47. PubMed ID: 11369084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly-epsilon-caprolactone microspheres and nanospheres: an overview.
    Sinha VR; Bansal K; Kaushik R; Kumria R; Trehan A
    Int J Pharm; 2004 Jun; 278(1):1-23. PubMed ID: 15158945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro evaluation of suspoemulsions for in situ-forming polymeric microspheres and controlled release of progesterone.
    Turino LN; Mariano RN; Mengatto LN; Luna JA
    J Microencapsul; 2015; 32(6):538-46. PubMed ID: 26218541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug diffusion and release from a bioerodible spherical capsule.
    Jain A; McGinty S; Pontrelli G
    Int J Pharm; 2022 Mar; 616():121442. PubMed ID: 34990743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a sustained-release biodegradable polymer delivery system for site-specific delivery of oligonucleotides: characterization of P(LA-GA) copolymer microspheres in vitro.
    Lewis KJ; Irwin WJ; Akhtar S
    J Drug Target; 1998; 5(4):291-302. PubMed ID: 9713978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulation of osteoblast seeded microcarriers into injectable, photopolymerizable three-dimensional scaffolds based on d,l-lactide and epsilon-caprolactone.
    Declercq HA; Gorski TL; Tielens SP; Schacht EH; Cornelissen MJ
    Biomacromolecules; 2005; 6(3):1608-14. PubMed ID: 15877384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple measurements for prediction of drug release from polymer matrices - Solubility parameters and intrinsic viscosity.
    Madsen CG; Skov A; Baldursdottir S; Rades T; Jorgensen L; Medlicott NJ
    Eur J Pharm Biopharm; 2015 May; 92():1-7. PubMed ID: 25668778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical modeling of PLGA microparticles: from polymer degradation to drug release.
    Casalini T; Rossi F; Lazzari S; Perale G; Masi M
    Mol Pharm; 2014 Nov; 11(11):4036-48. PubMed ID: 25230105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of polymer blending on the release of ganciclovir from PLGA microspheres.
    Duvvuri S; Gaurav Janoria K; Mitra AK
    Pharm Res; 2006 Jan; 23(1):215-23. PubMed ID: 16320000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical model of erosion and macromolecular drug release from biodegrading microspheres.
    Batycky RP; Hanes J; Langer R; Edwards DA
    J Pharm Sci; 1997 Dec; 86(12):1464-77. PubMed ID: 9423163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of lovastatin-loaded poly(lactic acid) microspheres for sustained oral delivery: in vitro and ex vivo evaluation.
    Guan Q; Chen W; Hu X
    Drug Des Devel Ther; 2015; 9():791-8. PubMed ID: 25709403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel biodegradable polymers as gene carriers.
    Yang Y; Jia W; Qi X; Yang C; Liu L; Zhang Z; Ma J; Zhou S; Li X
    Macromol Biosci; 2004 Dec; 4(12):1113-7. PubMed ID: 15586388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.