BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 16188892)

  • 1. Human topoisomerase IIalpha rapidly relaxes positively supercoiled DNA: implications for enzyme action ahead of replication forks.
    McClendon AK; Rodriguez AC; Osheroff N
    J Biol Chem; 2005 Nov; 280(47):39337-45. PubMed ID: 16188892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bimodal recognition of DNA geometry by human topoisomerase II alpha: preferential relaxation of positively supercoiled DNA requires elements in the C-terminal domain.
    McClendon AK; Gentry AC; Dickey JS; Brinch M; Bendsen S; Andersen AH; Osheroff N
    Biochemistry; 2008 Dec; 47(50):13169-78. PubMed ID: 19053267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The geometry of DNA supercoils modulates topoisomerase-mediated DNA cleavage and enzyme response to anticancer drugs.
    McClendon AK; Osheroff N
    Biochemistry; 2006 Mar; 45(9):3040-50. PubMed ID: 16503659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral discrimination and writhe-dependent relaxation mechanism of human topoisomerase IIα.
    Seol Y; Gentry AC; Osheroff N; Neuman KC
    J Biol Chem; 2013 May; 288(19):13695-703. PubMed ID: 23508957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of DNA Supercoil Handedness during Catenation Catalyzed by Type II Topoisomerases.
    Dalvie ED; Stacy JC; Neuman KC; Osheroff N
    Biochemistry; 2022 Oct; 61(19):2148-2158. PubMed ID: 36122251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic core of human topoisomerase IIα: insights into enzyme-DNA interactions and drug mechanism.
    Lindsey RH; Pendleton M; Ashley RE; Mercer SL; Deweese JE; Osheroff N
    Biochemistry; 2014 Oct; 53(41):6595-602. PubMed ID: 25280269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ability of viral topoisomerase II to discern the handedness of supercoiled DNA: bimodal recognition of DNA geometry by type II enzymes.
    McClendon AK; Dickey JS; Osheroff N
    Biochemistry; 2006 Sep; 45(38):11674-80. PubMed ID: 16981727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-throughput fluorescence anisotropy-based assay for human topoisomerase II β-catalyzed ATP-dependent supercoiled DNA relaxation.
    Shapiro AB; Austin CA
    Anal Biochem; 2014 Mar; 448():23-9. PubMed ID: 24309019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal ion interactions in the DNA cleavage/ligation active site of human topoisomerase IIalpha.
    Deweese JE; Guengerich FP; Burgin AB; Osheroff N
    Biochemistry; 2009 Sep; 48(38):8940-7. PubMed ID: 19697956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activities of gyrase and topoisomerase IV on positively supercoiled DNA.
    Ashley RE; Dittmore A; McPherson SA; Turnbough CL; Neuman KC; Osheroff N
    Nucleic Acids Res; 2017 Sep; 45(16):9611-9624. PubMed ID: 28934496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation of cysteine residue 455 to alanine in human topoisomerase IIalpha confers hypersensitivity to quinones: enhancing DNA scission by closing the N-terminal protein gate.
    Bender RP; Osheroff N
    Chem Res Toxicol; 2007 Jun; 20(6):975-81. PubMed ID: 17516663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements.
    Crisona NJ; Strick TR; Bensimon D; Croquette V; Cozzarelli NR
    Genes Dev; 2000 Nov; 14(22):2881-92. PubMed ID: 11090135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Varying levels of positive and negative supercoiling differently affect the efficiency with which topoisomerase II catenates and decatenates DNA.
    Roca J
    J Mol Biol; 2001 Jan; 305(3):441-50. PubMed ID: 11152602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cleavage of plasmid DNA by eukaryotic topoisomerase II.
    Bandele OJ; Osheroff N
    Methods Mol Biol; 2009; 582():39-47. PubMed ID: 19763940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA supercoiling during ATP-dependent DNA translocation by the type I restriction enzyme EcoAI.
    Janscak P; Bickle TA
    J Mol Biol; 2000 Jan; 295(4):1089-99. PubMed ID: 10656812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metnase promotes restart and repair of stalled and collapsed replication forks.
    De Haro LP; Wray J; Williamson EA; Durant ST; Corwin L; Gentry AC; Osheroff N; Lee SH; Hromas R; Nickoloff JA
    Nucleic Acids Res; 2010 Sep; 38(17):5681-91. PubMed ID: 20457750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome length influences replication-induced topological stress.
    Kegel A; Betts-Lindroos H; Kanno T; Jeppsson K; Ström L; Katou Y; Itoh T; Shirahige K; Sjögren C
    Nature; 2011 Mar; 471(7338):392-6. PubMed ID: 21368764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of the C-terminal domain of topoisomerase IIalpha on the DNA cleavage activity of the human enzyme.
    Dickey JS; Osheroff N
    Biochemistry; 2005 Aug; 44(34):11546-54. PubMed ID: 16114891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The geometry of DNA supercoils modulates the DNA cleavage activity of human topoisomerase I.
    Gentry AC; Juul S; Veigaard C; Knudsen BR; Osheroff N
    Nucleic Acids Res; 2011 Feb; 39(3):1014-22. PubMed ID: 20855291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction in vitro of type III intermediate filament proteins with supercoiled plasmid DNA and modulation of eukaryotic DNA topoisomerase I and II activities.
    Li G; Tolstonog GV; Sabasch M; Traub P
    DNA Cell Biol; 2002 Oct; 21(10):743-69. PubMed ID: 12443544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.